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Abstract 

In the wake of the 2008 financial tsunami, existing methods and tools for managing financial 

risks have been criticized for weaknesses in monitoring and alleviating risks at the systemic 

level. A 2009 article in Nature suggested new approaches to modeling economic meltdownsare 

needed to prevent future financial crises. However, existing studies have not focused on analysis 

of systemic risk at the individual bank levelin a banking network, which is essential for 

monitoring and mitigating contagious bank failures. To this end, we develop a Network 

Approach to Risk Management (NARM) for modeling and analyzing systemic risk in banking 
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systems. NARM views banks as a network that is linked through financial relationships. It 

incorporates network and financial principles into a Business Intelligence (BI) algorithm to 

analyze systemic risk attributed to each individual bank via simulationsbased on real-world data 

from the Federal Deposit Insurance Corporation. Our research demonstrates the feasibility of 

modeling and analyzing systemic risk at the individual bank level in a banking network using a 

BI-based approach. In terms of business impacts, NARM offers a new means for predicting 

contagious bank failures and determining capital injection prioritiesin the wake of financial 

crises. Our simulation study shows that under significant market shocks, the interbank payment 

relationshipbecomes more influential than the correlated bank portfolio relationshipin 

determining an individual bank’s survival. These insights should help financial regulators devise 

more effective policies and mechanisms to prevent the collapse of a banking system. Further, 

NARM and the simulation procedure driven by real-world data proposed in this study have 

instructional value to similar research areas such as bank stress testing, where time series data 

and business networks may be studied. 

Keywords: Systemic risk, contagious bank failures, business intelligence, simulation. 
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1. INTRODUCTION 

Many economists consider the recent global financial tsunamito bethe worst financial crisis since 

the Great Depression in the 1930s (Bullard et al. 2009). It was triggered by a liquidity shortfall in 

the United States (U.S.) banking system and resulted in the bankruptcy of several largefinancial 

institutions such asLehman Brothers, pushing the banking system to the brink of a system-wide 

collapse. More than 160 U.S. banks failed in 2008 and 2009, while only 11 banks failed between 

2003 and 2007 (FDIC 2011). One important consequence of this crisis is the establishment of a 

new U.S. federal agency – Financial Stability Oversight Council –chartered with monitoring and 

mitigating systemic risk in the financial systemaccording to the 2010 Dodd–Frank Wall Street 

Reform and Consumer Protection Act. Systemic risk refers to “the propagation of an agent's 

economic distress to other agents that have links with the starting agent through financial 

transactions”(Rochet and Tirole 1996). In our study, it refers to the risks imposed by interbank 

relationships in banking systems, where the failure of a single bank or cluster of banks can cause 

contagious bank failures (i.e., a cascading failure), which could potentially bring down the entire 

system (Schwarcz 2008). 

Our study focuses on systemic risk at the individual bank level, i.e., the systemic risk of a 

banking system attributed to an individual bank. For simplicity, we refer to the systemic risk at 

theindividual bank level as the bank systemic risk, which is defined as the impactof a bank’s 

economic distress onotherbanks in the same banking system. In contrast, we refer to the systemic 

risk of the entire banking system as the network systemic risk.Theconcept of bank systemic risk 

is critical for central banks to determining which banks should receive capital injections first to 

stop further contagious bank failures during a financial crisis. In addition, by knowing the 

http://en.wikipedia.org/wiki/Cascading_failure
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relative magnitude of the influences a bank receives from the economic distresses of its linked 

banks, central banks can effectively predict which banks are most likely to fail first in possible 

contagious bank failure scenarios. However, previous research mainly focused on studyingthe 

impacts of systemic risk on the whole banking system (Eisenberg and Noe 2001; Elsinger et al. 

2006; Kaufman 1995; Kaufman et al. 2003). There is a lack of effective methods 

andtechnologies for modelingand analyzing bank systemic risk. 

A major challenge for studying bank systemic risk is to model thetwo mainsourcesofsystemic 

risk in banking systems identified by Elsinger et al.(2006):1) the correlation relationshipbetween 

two banks’ financial asset portfolios, and 2) the interbank payment relationship that can transmit 

a single bank’s failure to itslinked banks.Figure 1 shows an examplescenario of how these two 

relationshipscan cause contagious bank failures. In this example, three banks, A, B, and C, share 

three financial assets, represented by X, Y, and Z. The solid lines represent interbank payment 

obligations and the dotted linesindicate the ownership relationships between the assets and the 

banks. Assuming a shock in the financial market has largely reduced the price of X, this will 

cause A, which held a large amount of X, to fail and default on its payment to B. B is affected 

byboth the reduced price of X and Bank A’s defaulted payment. If B’s loss is greater than its 

capital, B will fail andthen default on its payment to C. This generates a loss for C, and so on, 

causing contagious bank failures. 
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Figure1.An Example of Contagious Bank Failures 

The above example shows that the systemic risk in banking systems largely depends on both 

interbank relationshipsand specific scenarios. This insight helps explain whyit is difficult to 

studybank systemic risk usingexisting approaches in finance. First, previous systemic risk 

research focused on modeling interbank payments (Degryse and Nguyen 2004; Sheldon and 

Maurer 1998; Upper and Worms 2004; Wells 2002) but largely overlooked correlation 

relationships between bank portfolios, mainly due to data availability issues. Elsinger et al. (2006) 

have studied both relationships but did not explicitly model the correlation relationship between 

two banks’ financial portfolio values. Second, studies that adopt technological methods to predict 

bank failures mainly rely on information about individual bank’s characteristics rather than 

interbank relationships (Boyacioglu et al. 2009; Min et al. 2006; Shin et al. 2005; Tam 1991; 

Tam and Kiang 1990). 

To address these issues, we develop a business intelligence (BI) based approach, called Network 

Approach to Risk Management (NARM), to model and analyze the systemic risk at the 

individual bank level. BI is commonly used as an umbrella term to describe concepts and 

methods to improve business decision making, including tools, applications, databases, and 
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methodologies (Raisinghani 2004). It aims to enable knowledge workers to make faster and 

better decisions through decision support technologies (Chaudhuri et al. 2011). Figure 2 

illustrates the three stages of NARM. First, NARM models a bank network using the data about 

bank status and interbank relationships collected from various data sources.NARM provides a 

network-based interpretation of the modern portfolio theory (MPT) (Markowitz 1952). Based on 

this interpretation, it successfully models the correlation relationship between two banks’ 

financial asset portfolios and the systemic riskoriginating from such relationships. We then 

construct a bank network model in which the links are the positive correlations between 

twobanks’ portfolios and interbank payment obligations. In the second stage, NARM uses 

discrete event simulation techniques to generate and simulate systemic risk scenarios based on 

the real-world bank data collected from the first stage. These simulated scenarios allow central 

banks to evaluate the effectiveness of different methods in terms of predicting contagious bank 

failures and determining capital injection priorities. In the third stage, NARM analyzes systemic 

risk in the simulated scenarios using a BI algorithm - Link-Aware Systemic Estimation of Risks 

(LASER) - we developed based on a network principle embedded in banking systems’systemic 

riskcalled Correlative Rank-In-Network Principle (CRINP). 
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Figure 2. An Illustration of the Network Approach to Risk Management 

We also conducted an evaluation study to compare the performance of LASER with several 

other network-based algorithms in the simulated scenarios based on data collected from 281,401 

Federal Deposit Insurance Corporation (FDIC) Call reports for 7,822 banks from 2001 to 

2010.The results show that LASER outperforms other network-basedalgorithms andthe most 

widely used bank risk measure – capital adequacy ratio (CAR). Moreover, we found that the 

relative predictive power of correlated bank portfolios and interbank payments largely depends 

on the magnitude of the market shocks. These business insights canhelp regulators devise better 

policies to prevent banking crises. 

Our NARM approach is unique in several ways. From the modeling perspective, NARM 

provides a novel network-based view of classic financial theories and risk measures, which leads 

to new models and methods for studying systemic risk at the level of individual banks. From the 

information systems (IS) researchers perspective, previous BI studies on predicting bank failures 

mainly applied data mining algorithms on historicaldata of individual banks’ financial ratios (e.g., 
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capital adequacyratio) (Boyacioglu et al. 2009). To the best of our knowledge, LASER is the first 

BI algorithm thatincorporates both network (CRINP) and financial (MPT-based systemic risk 

model) principles to analyze systemic risk. It opens new possibilities for IS researchers to 

contribute to one of the most important research problems for today’s world economy – systemic 

risk management in banking systems. From the business perspective, NARM provides central 

banks an effective BI-based approach to utilize the data they have for monitoring systemic risk at 

the individual bank level and determining capital injection priorities. 

The remainder of this paper is structured as follows. In Section 2, we review the studies that are 

relevant to this research. Section 3 describes our bank network model and the interbank payment 

clearing mechanism. In Section 4, we discuss the details of the LASER algorithm. In Section 5, 

wepresent the design and results of a simulation-based evaluation study. Then we discuss the 

implications of our findings in the context of systemic risk management. We summarize our 

findings in Section 6. 

2. RELATED WORK 

2.1 Modeling the Sources of Systemic Risk in Banking Systems 

Systemic risk in banking systems is rooted in interbank relationships (Elsinger et al. 2006; 

Kaufman et al. 2003). Existing bank risk management techniques or measurements were mainly 

developed for individual banks. Thus they are not very effective in modeling and analyzing 

systemic risk. Elsinger et al. (2006) suggested the major challenge for modeling systemic risks 

and capturing the two risk sources: 1) an insolvent bank may default on its interbank payment 

obligations to otherbanksand cause more banksto fail, thereby triggering adomino effect which is 

often called contagious bank failure (Aghion et al. 2000); 2) an adverse economic shock may 
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cause significant losses inbanks’ correlated financial asset portfolios andresult insimultaneous 

failures of multiple banks. These two systemic risk sources are not independent of each other and 

oftenexist at the same time. 

2.1.1 Modeling Interbank Payment Relationships 

The first source of systemic risk– the interbank payment obligations -- has beenwell studied in 

financeliterature. Rochet and Tirole (1996) studied the relationship between interbank loans and 

systemic risk. Angelini et al. (1996) studied an interbank payment network and found that on 

average the failure of 4% of network participants can trigger contagious bank failures. Eisenberg 

and Noe (2001) analyzed the properties of inter-firm cash flows featuring cyclical 

interdependence. In addition, since contagious bank failures are very rare in real-world banking 

systems, there is little empiricaldata available for studying systemic risk. Thus Sheldon and 

Maurer (1998), Degryse and Nguyen (2004), Wells (2002), and Upper and Worms (2004) all use 

simulation methods to study contagious bank failures. However, these studies mainly focused on 

the interbank payment relationships, largely ignoring the other important source of systemic risk 

– the correlated bank financial asset portfolios. 

2.1.2 Modeling Correlated Bank Financial Asset Portfolios 

Elsinger et al. (2006) conducted a study which combines the analysis of interbank payment 

relationships and correlated financial portfolios. They adopted a simulation approach to studying 

these two risk sources usinga unique data setfrom the Austrian Central Bank. In their study, it 

was found that banks’ exposures to market risk through the correlated financial asset portfolios 

have substantial impacts on the risk concealed in the network of interbank payment obligations. 

Their simulation study also provided an estimate of the amount of capital injection needed to 
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avoid contagious bank failures, which is 0.01% of the banking system’s total assets. Although 

focusing on the same two systemic risk sources, our study differs from theirs mainly from two 

aspects. First, Elsinger et al. (2006) focused on studying the impacts of systemic risk on the 

whole banking system, while we mainly aim to model and analyzesystemic riskat theindividual 

bank level. One of our research goals is todevelop a method that can rank individualbanks based 

on the level of systemic risk they contribute to the banking system. Such a method can support 

central banks’ decisions regarding appropriatecapital injection priorities during financial crisesto 

avoid further contagious bank failures. Second, Elsinger et al. (2006) did not explicitly model 

and analyze the correlation relationship between two banks’financial asset portfolios, which is 

critical for studying the systemic risk at the individual bank level. The major modeling challenge 

is that the composition ofa bank’s financial asset portfolio is often confidential information. In 

this study, we develop a methodbased on Markowitz’s modern portfolio theory (MPT) (1952) to 

modelthe correlated relationship without the composition informationand measure the systemic 

riskat the individual bank level. Next, we review MPT to lay the ground for our modeling 

method described in Section 3.  

2.1.3 Modern Portfolio Theory 

Modern portfolio theory (Markowitz 1952) defines a financial asset’s risk as the standard 

deviation of its return and models the risk of a financial asset portfolio (i.e., weighted 

combination of assets) as the variance of this portfolio’s return. The idea behind MPT is that the 

risk of an asset portfolio not only depends on each individual asset’s risk, but also on how each 

asset’s return changes relative to how every other assetin the portfolio changes. For instance, if 

different types of assets in a portfolio often change in value in opposite ways, it is possible that 

the variance of this portfolio’s return will be lower than the variance of each individual asset. 
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Therefore, the portfolio return variance (i.e., portfolio risk) can be reduced by including different 

assets whose returns are not positively correlated into the portfolio. The variance of a portfolio 

R’s return 2

R (i.e., portfolio R’s risk) iscalculated as: 

 
 


Di ijDj

ijjiji

Di

iiR www
,

222 2 
 

(1) 

where D is the set of assets in portfolio R, iw  is the percentage of R’stotal value that isinvested 

in the asset i, i is the standard deviation of i’s return, and ij  is the correlation coefficient 

between the returns on assets i and j. 

Equation (1) shows that the variance of an asset portfolio largely depends on the correlation 

coefficients  between all pairs of its assets’ returns.The more correlated the portfolio assets’ 

returns are, the larger the portfolio risk is. Since the assumptions about market and investors in 

MPT also apply to banks’ financial assets, the portfolio risk measure (Equation 1) has great 

potential for modeling the systemic risk originating from banks’ correlated financial asset 

portfolios. That is, the more similar the market risk exposures of the banks’portfolios are, the 

greater the systemic risk the banking system has. 

2.2Analyzing Systemic Risk with Business Intelligence Methods 

Recent years have witnessed a growing interest in studying systemic risk in banking systems 

froma network perspective (Elsinger et al. 2006; Furfine 2003; Iyer and Peydró 2011; Simon 

2004). These studies mainly focused on the empirical mappings of interbank markets to financial 

networks in several major banking systems such as United States (Furfine 2003), United 

Kingdom (Simon 2004), Switzerland (Sheldon and Maurer 1998), Austria (Elsinger et al. 2006), 

and India (Iyer and Peydró 2011). Their analyses aim to discover the roles of such financial 
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networks in contagious bank failures. Their findings largely depend on specific empirical 

settings such as time periods and market conditions. For instance, Furfine (2003) studied 

interbank funds transactions in Fed wire across 719 U.S. commercial banks in February, 1998. 

The results showthat the interbank payment relationship does not have significant impact on the 

stability of the U.S. banking system. But the liquidity shortfall of the U.S. banking system during 

the recent financial crisis indicates that this finding may not always hold under extreme market 

conditions. Thus, empirical analyses of limited historical dataareinadequate for predicting 

contagious bank failures in financial crises. Moreover, nowadays central banks need the 

capabilities of real-time data analysis for devising systemic risk mitigation strategies (e.g., 

determining capital injection priorities). Therefore, an effective approach that can enable the 

central banks to conduct timely analyses and examine systemic risk mitigation strategies in 

different crisis scenarios is greatly needed.  

Business Intelligence (BI) is an ideal approach for achieving the above goals. BI is an umbrella 

term for describing “concepts and methods to improve business decision making,” concerning 

tools, applications, databases, and methodologies (Raisinghani 2004). As a data-centric approach, 

BI’s main objectives are to enableeasy access to diverse business data, enable transformation of 

these data, and provide business managers the ability to conduct timely data analyses and take 

appropriate actions (Turban et al. 2008). The findings from such analyses are the products of BI 

which enable businessesto predict the behaviors of their environments (Jourdan et al. 2008; 

Lönnqvist and Pirttimäki 2006; Martinsons 1994). A stream of studies that is most relevant to 

our research focuses on applying BI algorithms on historical data of financial ratios of individual 

banks, aiming to predict bank failures (Boyacioglu et al. 2009; Min et al. 2006; Shin et al. 2005; 

Tam 1991; Tam and Kiang 1990; Wang et al. 2005; Wu et al. 2007). These ratios (e.g., capital 
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adequacy ratio) have captured certain financial principles embedded inindividual bank’s risks. 

However, they are not designed for predicting contagious bank failures since systemic risk 

largely depends on interbank relationships. Therefore, BI methods that can incorporate the 

network principles behind systemic risk are needed for effectively predicting contagious bank 

failures. 

2.2.1Hyperlink-Induced Topic Search (HITS)-related Algorithms 

In this section, we review the Hyperlink-Induced Topic Search (HITS) algorithm as well as its 

extensions, mainly because the networkprinciple behind itcan be applied to model how systemic 

risk is transmitted through interbank relationships. In addition, the design of the weighted HITS 

algorithm has great potential for integrating multiple factors or principles that affect systemic 

risk. Kleinberg (1999) developed HITS to rank the importance of web pages. Its assumption is 

that a hyperlink transmitsrecognition from one web pageto another. The collective recognitions 

from all of the incoming hyperlinks of a web page build up its relative importance in the World 

Wide Web. HITS introduces two scores for measuring aweb page’s relative importance and 

recognition influence respectively: 1) the authority score, which estimates the relative 

importance of this web page, and 2) the hub score, which estimates the relative recognition 

influence this web page’s hyperlink has on another page. The authority score of a web page i is 

computed as the sum of the normalized hub scores for web pages that link to i. On the other hand 

i’s hub score is the sum of the normalized authority scores of the pages that I links to. More 

specifically, a web page i’s authority score iAu  and hub score iHub  can be calculated as: 

 


Aj ji HubAu ,  


Cj ji AuHub (2) 

where A is the set of nodes that links to i, and C is the set of nodes that i links to. 
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Several extensions of the HITS algorithm have been developed to improve its performance in 

ranking web pages. These HITS-related algorithms focused on adding weights to the two scores 

based on contextual information on the Internet. There are two maintypes of weights. The first 

type of weights often reflects the value of a web page’s content (Deng et al. 2009; Zhang et al. 

2007). From the algorithmic perspective, these weights are associated with the nodes in the 

network. The second type of weights represents the value of a hyperlink relative to its peers (i.e., 

links from the same web page) (Bharat and Henzinger 1998; Li et al. 2002) andisoftenassociated 

with the links in the networks. Such added weights aim to incorporate the factors, principles, or 

mechanisms within the application domain that affect the importance of the nodes. 

2.3 Research Gaps and Research Objectives 

To summarize, previous studies have not focused on the systemic risk at the individual bank 

level, i.e., bank systemic risk. However, the modeling and analysis of bank systemic risk is 

essential for monitoring and mitigating contagious bank failures and determiningcapital injection 

priorities. Moreover, previous systemic risk studieswere not targetedto help central banks 

conduct timely data analysis and mitigatebank systemic risk in the face ofa financial crisis. 

Further, Business Intelligence studies on bank failure predictions mainlyfocused on modeling 

various financial risksof individual banks but largely ignored the relation-induced systemic risk.  

In summary, there is a research opportunity for studying bank systemic riskvia Business 

Intelligence methods in light of interbank relationshipsfor purposes of supporting capital 

injection decisions. Thus, we set two research objectives in this paper. First, we aim to model 

banksystemic riskthrough its correlated financial asset portfolio links. Second, wewill develop a 

BI approach that incorporates both network and financial principles for predicting contagious 

bank failures and determining capital injection priorities. 
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3. A NETWORK APPROACH TO RISK MANAGEMENT (NARM)  

To achieve these two objectives, we proposed a BI approach called the Network Approach to 

Risk Management (NARM),which consists of 1) a bank network model in which links are 

correlated bank portfolios and interbank payment obligations, 2) aBI algorithm called 

Link-Aware Systemic Estimation of Risks (LASER) which incorporates both network and 

financial principles for ranking individual banks based on theirsystemic risk levels, and 3) a 

simulation-based approach for evaluating LASER’s performances in predicting contagious bank 

failures and determining capital injection priorities. In this section, we will describe the bank 

network model in NARM that is based on a novel network-based interpretation of modern 

portfolio theory. In addition, we present our interbank payment clearing mechanism which 

explicitly modelsthe correlatedbank financial asset portfolio relationship. 

3.1 Modeling Systemic Risk fromCorrelatedBank Financial Asset Portfolios 

As suggested in Section 2, the major challenge for modeling systemic risk originating from 

correlated bank financial asset portfolios is the lack of information about their composition. A 

bank’s financial asset portfolio consists of various types of assets that can be traded in financial 

markets, such as mortgage-backed securities, cash instruments, and financial derivatives. 

However, information about a bank’s holdings of specific assets is often not publiclyavailable, 

which makes it very difficult to model the correlation relationships among bank portfolios at the 

individual asset level. We then develop a method that models such relationships at the portfolio 

level. 

As shown in Equation 1, Modern Portfolio Theory (MPT) perceives that the market risk of a 

financial asset portfolio depends on the correlations among its assets’ returns. In this research, 



 16 

we can view a banking system as a large portfolio in which each asset is a bank’s financial asset 

portfolio. Then MPT’s risk perception, that portfolio risk depends on the correlation relationships 

among its assets, is consistent withthe finding in previous banking research (Eisenberg and Noe 

2001; Elsinger et al. 2006) that one major source of systemic risk is the correlated bank 

portfolios. However, to adopt this MPT-based perspective for modeling systemic risk, two issues 

need to be addressed. First, MPT makes certain assumptions about investors and markets.These 

assumptionsneed to be checked. Second, MPT focuses on modeling the risks at the portfolio 

level (system level in this research), while our study focuses onstudying systemic riskat the 

individual bank level. 

3.1.1 Assumptions for Modern Portfolio Theory  

MPTmainly has two types of assumptions for investors and markets respectively. First, MPT 

assumes that all investors are 1) rational and risk-averse, 2) aim to maximize economic utility, 

and 3) have access to the same market information at the same time(Markowitz 1952). These 

three assumptions are also found in Fama’s (1970) efficient-market hypothesis which suggests 

that financial markets are “informationally efficient.”In this study, the investors are professional 

managers who manage the banks’ financial asset portfolios. They are usuallyexperiencedand 

well informed. With the advance ofthe Internet and other information technologies, these 

intuitional investors usually have accessto the same public information when it becomes 

available. Thus we also adopt thethree above assumptions in this study. In addition, MPT also 

assumes that asset returns are normally distributed random variables. In reality, these 

assumptions are not entirely true and sometimes are violated by rare events like insider trading. 

Such limitations will compromise MPT to a certain degree. However, considering the small 

probability of such events, we suggestthe adoption of MPTis appropriate for this study. 
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Second, from the market perspective, MPT assumes that the correlations between assets are fixed 

and constant over the observation period. This assumption is based on the idea that the 

correlations depend on systemic relationships among the componentassets. It is consistent with 

the main assumption ofthis study, that is, the strong correlation between two bank portfolio 

returns reflects similarrisk preferences of the management teams between these two banks. Our 

study aimsto model and utilize such patterns to predict how two banks’portfolio returns change 

during financial crises. 

3.1.2 Modeling Systemic Risk at the Individual Bank Level 

As suggested earlier, we need to develop an approach based on MPT for modeling banksystemic 

riskoriginating from the correlated bank portfolios between two banks. MPT uses the variance of 

a portfolio R’s returns 2

R  as the proxy for its risk(Markowitz 1952), calculated as: 

  


Di Dj ijjijiR ww  2

 

(3) 

where D is the set of assets in portfolio R; all other notations have the same meanings with 

Equation 1. 

After adopting the MPT assumptions described in Section 3.1.1, we can view a banking system 

as an asset portfolio in which each bank’s portfolio is an asset. Then the systemic risk of a 

banking system B originating fromthe correlated bank portfolios can be viewed as the risk of the 

asset portfolio B. Based on Equation (3), we define the systemic risk of a banking system as 

follows. 

Definition 1: The systemic risk of abanking system (i.e., network systemic risk) B 

originating fromthe correlated bank portfolios is calculated as the variance of B’s returns: 
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  


Ni Nj ijjijiB ww  2 (4) 

whereN is the set of banks in this banking system B, 
iw  is the weight of bank i’s portfolio 

value in B, i  is the standard deviation of i’s portfolio returns over the observation period, 

ij is the correlation coefficient between the portfolio returns of banks i and j. 

Such a relation-based definition makes network modeling a natural choice for further 

decomposing the network systemic riskinto the individual bank level. We model the whole 

banking system as a network, in which the bank portfolios are nodes and their correlation 

relationships are undirected links. Based on this network model and Equation (4), we then define 

the systemic risk at the individual bank level as follows. 

Definition 2: The systemic risk bank i contributes to the banking system (i.e., i’s bank 

systemic risk) originating from i’s correlation relationships with other banks’ portfolios, )(iG , 

is calculated as: 

 


Lj ijjijiwwiG )( (5) 

where L is the set of banks that have correlated portfolio links with bank i. 

Then G(i) is the sum of the weighted co-variances between the returns of bank i and all of its 

linked banks. Theweighted co-variance between the portfolio returns of banks i and j can be 

viewed as the systemic risk bank i contributes to the banking system through its correlated 

portfolio link with j. Based on this interpretation, we can further model the systemic risk from 

the individual bank level to the dyadic level.We define the dyadic measure of systemic risk as 

follows. 
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Definition 3: The systemic riskassociatedwith the correlated portfoliorelationshipbetween a 

dyad of banks i and j, i.e., the dyadic measure of systemic risk, ijS , is calculated as: 

ijjijiij wwS 
 
where ji   (6) 

3.1.3Modeling a Correlated Bank Portfolio Network  

As Equation (6) shows, the systemic risk associated with each correlated portfolio link between 

two banks i and j, ijS , depends on the correlation coefficient for their portfolio returns ij . A 

positive correlation coefficient ij means that the portfolio returns between banks i and j vary 

together over time, indicating they are generallyexposed to similar typesof risks over the 

observationperiod. In this study, we excluded such negative correlatedrelationshipsfrom our bank 

portfolio network model, primarily becausethe effects of such negative correlations between 

bank portfolio returns tend to become smaller during a financial crisis than in normal times. The 

values of most bank portfolioswill be largely reduced in a financial crisisand become more 

positively correlated. 

Therefore, we construct the correlated bank portfolio network by including links (i.e., dyads of 

bank portfolios) only if the correlation coefficients for their returns arelarger than a positive 

threshold value s  ( sij   ). This construction process is done by 1) determining the 

synchronous correlation coefficient of thelogarithmic value difference of a bank portfolio over a 

selected observationtime period T, and 2) selecting dyads of banks with correlation coefficients 

larger than the threshold value s as the links in our correlated bank portfolio network.  
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To calculate the correlation coefficients for two banks’ portfolio returns over the observation 

period T, we adopted the operational definition of the correlation coefficient for two financial 

asset returns developed by Bonanno et al. (2004) as follows: 

 

))((
2
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rrrr

rrrr




 (7) 

)(ln)(ln ttFtFr iii  Tt   (8) 

where i and j are banks; )(tFi is the market value of bank i’s financial asset portfolio at time t, and 

t is the time horizon selected to observe the changes inthe return of a bank portfolio. The 

logarithmic value difference of a portfolio i’s return ir  over the time period t is calculated as a 

proxy of the percentage changes of bank i’s portfolio returns. In addition, the correlation 

coefficient ij is computed between all possible pairs of bank portfolios present in the selected 

data sample. The statistical average, as indicated with the notation , is a temporal average 

calculated over the time period T. 

According to Equation (7),   measures the strength of the linear dependence between the 

changes of two banks’ portfolio returns.Itaims to capturethesimilarities between two 

banks’long-term investment preferences and behaviors, which largely determine the correlations 

in their portfolio returns. For instance, the managers of two banks both prefer to 

includemortgage-backed securities in their banks’ financial asset portfolios. Then theburstof the 

housing bubble will cause similarnegative impacts on theirportfolioreturns, resulting in apositive 

correlation coefficient. 
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In this study, we set the threshold value s for the correlation coefficient as 0.5 (i.e., sij   ) for 

the following reasons. First, Elsinger et al. (2006) found that the changes in the majority of the 

881 Austrian banks’portfolio returns are highly correlated to the aggregate market profits and 

losses of the Austrianbanking system. The mean correlationcoefficient is 0.48, indicatingthat in 

general banks’ financial asset portfolio returns tend to be positively correlated with each other. 

Second, when 5.0ij , we need at least 20 data points for each pair of banks to test the 

statistical significance of ij . However, we may not have more than 20 data points for many 

banks in our empirical data set. Therefore, 0.5 isan appropriate threshold value for our empirical 

evaluation study. In addition, we tested the robustness of our correlated portfolio network model 

and the LASER algorithm with different threshold values s in our evaluation study. The results 

are reported in Section 5.2 and support the choice of setting s as 0.5. 

3.2 Modeling the Interbank Payment Networkand Clearing Mechanism 

Interbank payment relationshipsareanother major source of systemic risk in banking systems 

(Eisenberg and Noe 2001; Elsinger et al. 2006; Kaufman et al. 2003). Similar to Elsinger’s 

approach (2006), we define a bank i’s interbank payment obligation to a bank j as a directed link 

from node i to j in theinterbank payment network. To model the interbank payment network, we 

use a NN   matrix L , in which ijl  represents the value of bank i’s payment obligation towards 

bank j. Therefore, the value of bank i’s total payment obligations towards other banks can be 

computed as  


N

j iji ld
1

, where N is the set of banks that bank i owes. We further define a 

normalized matrix  
NN

 1,0 by dividing each entry ijl over the relevant total obligation
id :  
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otherwise

difdl iiij

ij

)0(

0

/ 









   (9) 

The clearing mechanism in Elsinger et al. (2006) does not explicitly models each bank’s 

financial portfolio value. But our modeling method described in Equations (7) and (8) requires 

the value of each individual bank i’s financial asset portfolio iF . Thus we developed a clearing 

mechanism that mainly differs from Elsinger’s by explicitly modeling the valuesof bank 

financial asset portfolios. Consider a set of N banks, each bank Ni has a clearing payment 

vector *

ip , which represents i’s ability to pay off its payment obligations to other banks. 

*

ip consists of three major components. The first two components are 1) bank i’s financial asset 

portfolio iF ; and 2) i’s capital reserve ie . The third component 

N

j jji p
1

* is the total amount of 

the interbank payments i receives from other banks. Thus banki’s clearing payment vector 
*

ip  

can be defined as follows: 
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The assumption is thateach bank has limited liability and requires proportional sharing of assets 

in case of a bank failure. Thus the amount of payment i can receive from its counterparty bank j 

depends on j’s actual payment ability *

jji p  instead of the nominal value of payment 

obligation
jjid . According to Eisenberg and Noe (2001), there is a unique clearing payment 

vector for each riskscenario. We implement thisclearing payment vector throughthe following 
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algorithmbased on Eisenberg and Noe’s (2001) fictitious default algorithm. We explain this 

algorithm in detail in Figure 3.  

Input: (1) the number of banks N , (2)the interbank payment matrix ][ ijlL  , (3)the bank capital 

reserve vector },...,{ 1 Neee  , and (4)the vector of banks’ financial asset 

portfolios },...,{ 1 NFFF   

Output: (1) clearing payment vector },...,{ **

1

*

Nppp  for the input banking system, (2) 

defaulting sequence of banks Def  

Step 1. Initialization 

1.1 Set the initial clearing payment vector dp * , where  


N

j iji ld
1

, i.e., the total nominal 

amount of money that bank i  owes to other banks. 

1.2. Normalize the interbank payment matrix L into }{ ij : 

 1.3.1 For each Ni , 

  1.3.1.1 For each Nj , 

   1.3.1.1.1 If 0id , 0ij , 

    1.3.1.1.2 Else iijij dl /  

Step 2. Repeat the following sub stepsuntilthere are no new contagious bank failures. 

 2.1. Try to clear the banking system with current clearing payment vector *p . 

2.2. If there is more than one bank failure under the *p ,  

2.2.1. Add the default banks into the defaulting sequence Def ;  

2.2.2. Otherwise stop the algorithm. 

 2.3. Update the clearing payment vector as: 

dpIFedpIpppp ))(())))(()(()(( ******  , 

where   is the normalized payment obligation matrix. )( *p  is a matrix in which all 

the elements are zero, except that 1)( *  iip  when bank i  fails in the current 

clearing payment vector *p . 

Step 3. Output the final values of *p  and the defaulting sequence of banks Def . 

Figure3.The Algorithm for the Payment Clearing Process 

4. A NETWORK-BASED ALGORITHM FOR ANALYZING BANK 

SYSTEMIC RISK 

4.1 The Correlative Rank-In-Network Principle (CRINP) 
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As summarized in Section 2.3, there is a research opportunity for analyzing bank systemic risk 

via network-based Business Intelligence approaches. By reviewing literature on network-based 

algorithms, we gained two important insights fromanalyzing the similarities between measuring 

bank systemic risk and a web page’s importance using the HITS algorithm.First, from the 

network perspective,a bank’s systemic risk,likea web page’simportance,isbased on therelational 

influencesfrom its linked banks or web pages. For HITS, the relational influence is asource web 

page’s recognition ofother pagestransmittedthroughits outgoing hyperlinks. Thus, the more 

recognitiona web page receives from other pages through the incoming hyperlinks, the more 

important this page becomes. For banksystemic risk, a source bank’s economic distress 

canimpose negative relational influence on other banks throughinterbank relationships and may 

cause contagious bank failures. Thus when a bank has more interbank relationships, its failure 

will have greater negative influence on other banks in the banking system. Second, such 

relational influence largely depends on the source node’s characteristics (e.g., systemic risk) and 

will affect the same characteristics of the target node. In HITS, the more important the source 

page is, the more recognition its outgoing hyperlinks will impose on the linked pages. In a 

banking system, a bank with higherbank systemic risk indicates its failure will have larger 

negative influences on its linked banks, and thus is more likely to cause contagious bank failures. 

To summarize, there is a common network phenomenon in both networks of web pages and 

banks: a node transmits its relational influences through itsoutgoing links and result in the status 

change of its linked nodes. This phenomenon has resulted in a network principle we define as 

follows: 
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Definition 4: A node’s prominence in a characteristic depends on 1) the number of incoming 

links which transmitted the corresponding relational influences, and 2) the prominence of this 

characteristic of the source nodes.  

In our study, thisnetwork principle is calledas the Correlative Rank-In-Network Principle 

(CRINP).CRINP has also been used in citation analysis to develop the famous “impact factor” 

for measuring the prominence of scientific journals(Garfield 1972) and in social network 

analysis to identify cliques(Hubbell 1965). But to the best of our knowledge, it was not formally 

defined and studied before, especially in banking-related research. 

The bank network in this study is much more complex than the Internet since the former contains 

two types of links with different levels of relational influences. Bigger banks often have more 

interbank transactions and larger correlated exposures in their asset portfolios than smaller banks. 

Thus CRINP needs to be adapted to the bank network in this study.Therefore, the systemic risk a 

bank receives in the banking system depends on 1) the number and the amount of incoming 

interbank paymentsfromother banks; 2) the number and the levels of its correlation relationships 

with other banks’ financial asset portfolios; and 3) the systemic risk levels of the 

linkedbanks.Thusthe standard HITS ranking algorithm cannot be directly applied to this bank 

network. An algorithm based on CRINP that can account for both types of interbank 

relationshipswith heterogeneousrelational influences is needed. 

4.2Link-Aware Systemic Estimation of Risks (LASER) Algorithm 

We developed a BIalgorithmcalled Link-Aware Systemic Estimation of Risks (LASER) that 

incorporates both the network principle (CRINP) and the financial principle (MPT-based bank 

systemic risk measurein Definition 2) to account for the influences of the systemic risk 

originating from the two interbank relationships. The LASER algorithm aims to rank banks 
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based on the relative levels of systemic risk these banks contribute to (or receive from) their 

linked banks in the banking system. Like HITS, the LASER algorithm provides two scores for 

each bank – the authority score and the hub score. A bank’s LASER authority score represents 

the level of systemic risk it received from other banks in the banking system. A bank’s hub 

scorerepresents the levelof systemic risk it imposed on other banks. 

4.2.1 Node-Weighted HITS Algorithm  

As mentioned in Section 4.1, amajor challenge for designing a bank systemic risk ranking 

algorithm is to factor in the heterogeneous influences associated with the two types of bank 

network links. The MPT-based bank systemic risk measure we developed in Section 3.1.2 

provides us an effective approach to modelingthebidirectional influences of bank systemic 

riskoriginating from correlated bank portfolio relationships. As defined in Equation (5), a nodei’s 

bank systemic risk (i.e., negative influence imposed on the banking system due to i’s failure) can 

be calculated as )(iG .Following Bharat and Henzinger (1998), )(iG  can be embedded into the 

HITS algorithm as a node’s weight to account forthe influence of the systemic risk originating 

from correlated bank portfolio links. We defined such an algorithm as the node-weighted HITS 

algorithm which is written as: 

 


Aj ji HubjGAu )( ,  


Cj ji AujGHub )( (11) 

where A is the set of banks from which i receives interbank payments, and C is the set of banks 

that i has interbank payment obligations to. iAu  is bank i’s authority score, while iHub is i’s 

hub score. The design of this node-weighted HITS aims to account for the influences of a bank’s 

systemic risk originating from the correlated bank portfolio links. 

4.2.2 Link-Weighted HITS Algorithm  
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However, the influences of the different amounts of interbank payments are ignored in the 

node-weighted HITS algorithm.To address this, a link-weighted HITS algorithm can be 

developed by following the weighting approach inseveralHITS-relatedalgorithms(Li et al. 2002; 

Xing and Ghorbani 2004). The resulting link-weighted HITS algorithm can be written as: 







Aj j

Uu ui

ji

i Hub
O

O
Au , 




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Cj j

Vv iv

ij

i Au
I

I
Hub  (12) 

where jiO  is the average value of interbank payments (per transaction) made from bank j to i 

over the observed time period.  Uu uiO  calculates the total amount of average payment values 

bank i received from the set of its linked banks U. Thus the link weight 
 Uu ui

ji

O

O
 measures the 

proportion of negative influence i receives from bank j’s failure through their interbank payment 

link. On the other hand, ijI  is the average value of payments bank i (per transaction) made to 

other banks. Then the link weight
 Vv iv

ij

I

I
 measures the proportion of negative influence that 

bank i’s failure imposes on bank j. However, such link weights alone cannot account for 

systemic risk originating from the correlated bank portfolio links. 

4.2.3IncorporatingNetwork and FinancialPrinciples to Measure Bank Systemic Risk 

Neithera node-norlink-weighted HITS algorithm alonecanfully account for the impacts ofbank 

systemic riskoriginating fromthe two types of interbank relationships in this study. Therefore, we 

adopt a combined approach similarto the oneused in both Zhang et al. (2007) and Deng et al. 

(2009)to design a BI algorithm for measuring bank systemic risk. This approach assigns 

appropriate weights to both nodes and links in a HITS algorithm, aiming to rank a web page’s 

importance based on both the value of its contents and hyperlinks. We use this combined 
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approach to incorporatingthe influences of the bank systemic risk originating from the two 

interbankrelationships into the designof aweighted HITS algorithm.The bank systemic risk 

measure (Definition 2) reflects the financial principles embedded in modern portfolio theory 

(MPT) and systemic risk originating from the correlated bank portfolios. On the other hand, the 

interbank payment relationship ismainlyresponsible forexplicitly transmitting the influence of a 

bank’s economic distress to its linkedbanks based on CRINP. 

Using the combined approach, we incorporate both the network principle, CRINP, and the 

financial principle, bank systemic risk measure, into the design of a systemic risk ranking 

algorithm which we call Link-Aware Systemic Estimation of Risks (LASER). It can be written 

as: 
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where A is the set of banks that sent payments to i; C is the set of banks that i sent payments to, 

and Y is the set of banks that have correlated portfolio links with i. Other notations have the same 

meanings as in Equation (5), (11), and (12). The influenceof bank i’s systemic risk originating 

from correlated bank portfolio links is reflected by the node weight )(iG . Similar to HITS, both 

the authority and hub scores are calculated for multiple iterations and eventually converge 

(Bharat and Henzinger 1998; Golub and Van Loan 1996). 

These two scores rank banks based on the relative levels of the system risk they receive from 

(contribute to) their linked banks in the banking system. The higher a bank’s authority score is, 

the bigger the influences it receives from other banks’ failures through interbank relationships. In 

theevaluation study described in Section 5, the authority score is used to predict the banks that 

are most likely to fail in the contagious bank failure scenarios. On the other hand, the higher a 
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bank’s hub score is, the bigger the influence its failure will impose onits linkedbanks. The hub 

score is used to identify banks whose failureswill have the largest negative impacts on the 

banking system during a financial crisis. Injecting capital to these banks may effectively stop 

furthercontagious bank failures and stabilize the banking system. Themain steps of LASER are 

described in Figure 4. 

Input: (1) bank set N , (2) an interbank payment matrix ][ ijlL  , and (3) a vector 

)}(),...,1({ NGGG   which indicates the level of each bank’s systemic riskoriginatedfrom 

correlated bank portfolio links. 

Output: (1) a ranked list of banks in terms of their authority scores in descending order, and 

(2) a ranked list of banks in terms of their hub scores in descending order. 

Step 1. Initialization: Set the initial values as1for the authority and hub scores. 

2.1. Set 1Au  and 1Hub  

Step 2. Repeat the following sub steps until the scores converge 

2.1. For each bank )( jiNi   

2.1.1. Calculate
 Uu ui

ji

O

O
based on interbank payment matrix L 

2.1.2. Update 





Aj j

Uu ui

ji

i Hub
O

O
jGAu )(  based on the pre-calculatedG(j) 

2.2. For each bank )( jiNi   

2.2.1. Calculate
 Vv iv

ij

I

I
based on interbank payment matrix L 

2.2.2. Update 





Cj j

Vv iv

ij

i Au
I

I
jGHub )(  based on the pre-calculatedG(j) 

 2.3. Normalize Au  and Hub  

Step 3. Ranking the banks 

3.1.Rank the banks in terms of Au  in descending order 

3.2. Rank the banks in terms of Hub  in descending order 

Figure4.The Main Steps of the LASER Algorithm 

5. A SIMULATION-BASED EVALUATION STUDY 

We conduct a study using both real-world and simulated data to evaluatethe performances of 

LASER with other methods in terms of predicting contagious bank failures and determining 
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capital injection priorities. This simulation-based evaluation study consists of twosteps. In the 

first step, we extract information from U.S. FDICbanking regulatory reports and the Federal 

Reserve Wire Network (Fedwire) to create a set of base scenarios at a series of reporting dates 

(denoted as Kt ).In the second step, for each base scenario, we generate systemic risk scenarios 

on ( Kt +1) day in which various financial market shocks and events such as contagious bank 

failures and capital injections are simulated.  

For each systemic risk scenario, we construct a correlated bank financial asset portfolio network 

and an interbank payment network using the U.S. banking information. Based on these two 

networks, the LASER algorithm generates two ranked lists of banks. The list of banks ranked by 

the LASER authority scores predicts which banks are most likely to fail in the givenscenario. 

The other list ranked by the LASER hub scores shows which banks may imposethe largest 

negative influenceson the banking system. Injecting capital to these banks with the highest hub 

scores may effectively stabilize the banking system.To evaluate LASER’s prediction 

performance, we compared the list ofthe banks that actually failed in thesimulated scenario with 

the list ofbanks ranked by LASER’s authority scores. The prediction performances of several 

methods, including the well-known bank financial ratio - capital adequacy ratio (CAR), were 

examined against LASER for comparison purposes. Moreover, we evaluated the effects of 

thecapital injection strategiesbased on LASER hub scores against several other methods in the 

simulated systemic risk scenarios. 

5.1 Data Sets and Simulation Scenario Generation 

5.1.1Data Sets 
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Two data sets were used in this study: an interbank payment dataset from Fedwire and a bank 

call reports dataset provided by the U.S. Federal Deposit Insurance Corporation (FDIC). Fedwire 

is a real-time gross settlement system provided by the Federal Reserve Banks for more than 

7,500 financial institutions, mostly banks, toprocess large-value inter-institutionpayments. Such 

payments include “the settlement ofinterbank purchases and sales of federal funds; 

thedisbursement or repayment of interbank loans; and the settlement of real estate transactions” 

(Soramäki et al. 2007). The Fedwire dataset provides system-level statistics such as average 

daily volumes and values of payments foreach quarterfrom 1992 to 2010. Using this data set and  

the empirical findings from previous studies (May et al. 2008; Soramäki et al. 2007) on the 

Fedwire network topology, we can simulate the Fedwire interbank payment transactions and 

network.  

The FDIC dataset contains information extracted from quarterly reports of major U.S. banks’ 

condition and income (i.e., call reports). These call reports include banks’balance sheets, income 

statements, and other supervisory reports. They are prepared by banks on the last day of each 

calendar quarter.These reports contain anextensive set of banking information such as capital 

adequacy statistics andmarket risk exposures. Suchinformation is widely used by the federal and 

state authorities, rating agencies, and the academic community as an important data source for 

monitoring and studying bank financial risks. In summary, call reports are a timely and critical 

data source of information about the U.S. banking system(FDIC 2010). With these two data sets, 

we evaluate the performance of the LASER algorithm in simulatedsystemic risk scenarios. 

5.1.2 Setting up Base Scenarios 

Wefirst set up a set of base scenarios as the start states of our simulation-based evaluation study. 

Each base scenario at time Kt  contains two types of information: 1) bank status such as value of 
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capital reserve; and 2) a correlated financial asset portfolio network constructed using the FDIC 

data set. The FDIC dataset contains information for 38 quarters ( 1t ,…, 38t ) from March 31, 2001 

to June 30, 2010. We use bank status information from the most recent 18 quarters (from 
21t to 

38t ) to set up the 18 base scenarios in our simulation experiment. 

Extracting Bank Status Information 

According to our payment clearing mechanism (Equation (10)), the capital reserve e is retrieved 

from the data item - Tier 1 capital - in the regulatory capital section of a FDIC call report. Tier 1 

capital is defined in both the Basel I and II Accords and mainly includes a bank’s equity capital 

and disclosed reserves. It measures a bank’s ability to sustain unexpected loss and serves as a 

safety net for bank solvency. Financial regulators in many countries require banks to keep a 

certain level of Tier 1 capital as protection against various banking risks including systemic risk. 

To obtain the value of a bank i’s financial asset portfolio iF , we select three accounting items 

from the FDIC call reports:(1) held-to-maturity securities, (2) trading assets (minus trading 

liabilities), and (3) available-for-sale securities. TheStatement of Financial Accounting Standards 

No. 115 requires each bank holding company to report these three items in order to classify its 

investment in equity securities.In this study, the sum of these three items is used as the value of 

abank’s financial asset portfolio. 

Constructing Correlated Financial Asset Portfolio Networks 

For each of the 18 base scenarios Kt  ( 3821  K ), we constructed the correlated bank portfolio 

linksby calculating the correlation coefficients between banks’ financial asset portfolio returns 

using Equation (7) over a predetermined observation period C(from CKt   to 1Kt ). Based on our 

domain expert’s recommendation, Cwas set as 20 quarters (i.e., 5 years). The assumption is that 
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the correlated portfolio relationship between two banks islargely affected by factors such as the 

management teams’ investment risk preferences. Moreover, banks thatengagedin mergers and 

acquisitions are excluded from our analysis because such transactions may temporarily distort 

bankperformance measuresin FDIC call reports. 

Then for each of base scenario (at time Kt ), we only include banks that have filed FDIC call 

reports with these three accounting itemsfor the past 5 years. For instance, among the 7,321 

banks that filed an FDIC report on December 31
st
, 2009 ( 36t ), 7,167 banks that filed call reports 

over the past 5 years (from 16t to 35t ) are included in the base scenario at 36t . Eventually we 

extracted 281,401 FDIC call reports filed by 7,822 distinct banks across the 38 quarters. 

Table 1. Basic Statistics of the Selected Data Sample from FDIC DataSet 

Time span 

Number of 

selected 

reports 

Total number of 

selected  

reporting banks 

Number of 

reporting quarters 

Average number 

of reporting banks 

per quarter 

03.2001- 06.2010 281,401 7,822 38 7,405 

5.1.3 Generating Systemic Risk Scenarios for Discrete Event Simulation 

Our main simulation approach is discrete event simulation. It is defined as “the variation in a 

model caused by a chronological sequence of events operating on it”(Sokolowski and Banks 

2009).The events are instantaneous occurrences that will change thestates of a banking 

system.Therefore, generating systemic risk scenarios withdiscrete event simulation involves 

simulatinga sequence of events that may change the value of F and eventuallycause contagious 

bank failures in a banking system. In this study, three types of events were included in a 

simulated systemic risk scenario: 1) financialmarket shock(s); 2) the interbank payment 
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settlement; and 3) capital injections to selected banks. The state of the banking system is 

described by the clearing payment vector *p  defined in Equation (10). 

Following the timesettingdescribed in Section 5.1.2, each systemic risk scenario is simulating a 

set of events within one day ( 1Kt ). At the start time
Kt , the initial values of a bank i’s financial 

portfolio and capital reserve ( iF  and ie ) are extracted from FDIC call reports to set up the base 

scenario. Then we start to simulate events that will affect the value of iF . ie  is assumed to 

remain constant. Based on Equation (10), the resulting values of '

iF  and i’s incoming payments 

 


N

j ijji ep
1

* will determine bank i’s payment ability 
'

ip  at the end of the day  

( 1Kt ). 
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Figure 5a.A Systemic Risk Scenariofor Predicting Contagious Bank Failures 
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Figure 5b.ASystemic Risk Scenariofor DeterminingCapital Injection Priorities 

Two designsof systemic risk scenarios are illustrated in Figure 5a and 5busing the modeling 

method of discrete event simulation. These two types of scenarios will be simulated using 
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real-world data for evaluating the performances of LASER against other methods, in terms of 

predicting contagious bank failures and identifying capital injection priorities. In reality, the 

market shocks and interbank payment settlement events may arrive randomly at any time in a 

day. However, the interbank payment settling system we aim to simulate – U.S. Fedwire– can 

provide intraday credit to banks through the central bank. Thus different sequences of the shock 

and settlement events within a business day will not affect the banks’ day-end payment 

ability.Thus we can design the events to happen in the sequences as shown in Figure 5. The same 

type of events is set to happen at the same instantaneous time step. 

As Figure 5a shows, a negative financial market shock can consist of major economic events that 

are assumed to happen at the first time step of the simulation day 1Kt , causing big losses for 

banks. A recent example is that the news of the 2011 Japan nuclear crisis caused the Nikkei stock 

market index to drop 10.6% on March 15
th

. Such a market shock caused significant losses for 

many banks’ correlated portfolios that contain Japan-related financial assets. At the second time 

step, the banks that suffer from such losses may not be able to settle their payment obligations to 

other banks, thereby causing contagious bank failures. In this design, we compared the bank 

failures predicted by LASER authority scores against the actual failures in the simulations. The 

designin Figure 5b adds the capital injection events after the market shock events. We use 

multiple methods, including the LASER hub scores, to select the banks for capital injections and 

observe their effects in reducing contagious bank failures in the simulations. 

Simulating a Negative Market Shock  

To simulate the impacts of anegative financial market shock on a bank’s financial asset portfolio 

value F, we adopt two mechanisms. The first mechanism follows Elsinger’s historical simulation 

approach (2006) and aims to simulate the random changes in banks’ portfolio values F due to 
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various market risks. This mechanism willgenerate adistribution of bank portfolio returns 

estimated using the capital asset pricing model (CAPM) based on real-world data. The CAPM 

developed by William Sharpe (1964) and John Lintner (1965) is one of the most widely used 

finance models for estimating the return for an individual financial assetbased on its sensitivity to 

the market risks. Since CAPM is built on modern portfolio theory (MPT) and shares its 

assumptions, it also works withour MPT-based correlated bank portfolio network model. Based 

on the CAPM equation, the expected portfolio return of bank i - )( iRE - is calculated as:  

))(()( fmifi RRERRE    (14) 

where fR  is the risk-free rate of interest, )( mRE is the expected return of the market, and i  is 

the sensitivity of i’s expected excess return to the expected excess market return. In our 

simulation, fR is set as the rate of return of U.S. Treasury Bills. Moreover, we use Dow Jones 

Industrial Average (DJIA) datato calculate the market return mR and estimate )( mRE . We 

collected daily data about U.S. Treasury Billsand DJIAfrom March 2001 to June 2010 (2,325 

trading days). For each bank i, i  is calculated as Equation (15) shows using the data on i’s 

quarterly returns iR from the FDIC data set along with the corresponding quarterly market 

returns mR . 
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),cov(
2

m
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R

RR


    (15) 

Then we rescale these returns assuming that a quarterconsists of61 trading days and useEquation 

(14) to estimate the quarterly expected value for bank portfolio returns. As a result, we construct 

a 7,822 (banks) 2,264 (days) matrix D of expected bank portfolio returns. Following 

Elsinger’s simulation approach, for each of the 18 base scenarios, we made 1,000 draws from 
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this estimated distribution of bank portfolio returnsto generate 1000systemic risk scenarios.To 

illustrate this procedure which aims to simulate the uncertainties in F, let sD be one such draw 

(i.e., a column vector from the matrix D ). It represents one randomly drawn scenario of expected 

quarterly returns (i.e., )( iRE ) for all 7,822 banks from the estimated distribution D based on 

CAPM. Let 
kt

F  denote the vector of the initial values of bank financial portfolios at the start 

time of the base scenario at Kt .Then the vector 
kts FD  contains the profits or losses for each 

bank realized under the scenario sD  at time 1Kt .For each of the base scenarios, we repeat 

this procedure 1,000 times and get a distribution of profits and losses of the banks in this base 

scenario. 

The second mechanism aims to simulate a significant negative shock on selected banks’ financial 

asset portfolios caused by sources other than stock market risks. This mechanism is analogous to 

how the recent subprime mortgage crisis has imposed economic shocks on the U.S. banking 

system.The collapse of the housing bubble in 2007 caused the value of financialassets and 

products linked to real estate prices to plummet. Major U.S. banks with huge exposures to these 

assets and products were affected first and suffered great losses. Some of these banks could not 

afford such losses and failed, which further affected other banks through correlated financial 

asset portfolios and interbank payment obligations. To emulate this propagation of bank failures 

starting from a small set of banks,we select the top 5% of the banks with the largest financial 

asset portfolio values at time Kt  as a seed set and simulate that each of them willsuffer a loss for 

a percentage S  (defined as shock rate) ofits portfolio value due to a negative shock. We choose 

the top 5% because Angelini et al. (1996) found thatcontagious bank failure can be triggered by 

the failure of as little as 4% of the banks in the system. 
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Simulating Capital Injections 

The scenario design in Figure 5b aims to examine the effects of capital injections guided by 

different methods, including the LASER algorithm. In this design, 5% of the banks are selected 

for capital injections in the generated systemic risk scenario based on a ranking method. The 

amount injected for each bank is expressed as a percentage of this bank’s financial asset portfolio 

value at the day 1Kt , called capital injection rate . This injection approach is consistent with 

the strategy of the Troubled Asset Relief Program (TARP) which allows the U.S. Government to 

purchase "troubled assets" of selected key banks in order to provide liquidity and stabilize the 

banking system. 

Simulating Interbank Payment Settlements 

Since the Fedwire dataset only provides consolidated system-level statistics on interbank 

payments, we need to simulate transaction-level interbank payment settlementsbased on such 

statistics. First, we simulate a network which representsthe interbank paymentrelationshipsin the 

banking system over one quarter (from 1Kt  to Kt ). This time period is chosen mainly because 

interbank payment relationships are often affected by short-term factors. For instance, at the end 

of each year, many multinational corporations often have large amounts of funds transferred 

across countries for tax benefits, resulting in unusual patterns for interbank payment activities in 

the short term. 

This Fedwire network is simulated based on the empirical findings from Soramäki’s study (2007) 

on the network topology of interbank paymentsamong 7,584 banks intheFedwiresystem for the 

first quarter of 2004, since the 7,822 banks in our FDIC dataset also use the Fedwire system. 

LikeSoramäki’s network, the average degree for our simulatedFedwire network is set to be 15 
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and the connectivity is 0.3%. The average daily number of payments is set to be 345,000 and the 

average value per payment is $3 million. The payment frequency distribution, degree distribution, 

and the distributionof payment values are also extracted from Soramäki’s study(2007). The 

assignment of an average payment value to a link is constrained by the capital reserve of the 

source bank at time Kt .  

Moreover, to examine the robustness of the LASER algorithm, for each of the 18 base scenarios, 

we simulate 1,000 such payment networks, in which a directed link from bank i to j represents 

that i has made one or more payments to jduring the quarter (from 1Kt  to Kt ). The link 

weightis set to be the average value per payment for this interbank payment relationship 

andselected from the empirical distribution reported in Soramäki (2007). For each of the 

interbank payment networks, we alsogenerate 1,000 configurations for assigning the payment 

value distributions to the network links on day 1Kt . Each configuration is considered as a 

systemic risk scenario. In such ascenariol, we can calculatethe bank failure rate as Nxbf l  , 

where x is the number of failed banks and N is the total number of banks in that scenario l. An 

average bank failure rate  across the set of all scenarios–L– can be calculated 

as Mbf
L

l l )( Ll , where M is the total number of generated scenarios. 

Comparing Average Bank FailureRates at DifferentShock Rates  
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Figure 6.Average Bank FailureRates for Generated Scenarios at Different Shock Rates 

Figure 6 shows the average bank failure rates  resulting from the generated scenarios using the 

setting in Figure 5a. The shock rate  can be larger than 1 since the trading liabilities of a 

financial asset portfolio may exceed its nominal value due to excessive leverage in financial 

derivative products. As the figure shows, when  is relatively low (0.1 to 1.4), the average bank 

failure rate  is relatively low, ranging from 2.9% to 12.8%. Starting at 5.1 ,  began to 

increase drastically. When  reaches 2.0, more than 70% of the banks failed, indicating a 

system-wide collapse of the banking system. 

These results show that the banking system cansustain relatively mild negative market shocks 

when 4.10   . However, when the shock rate exceedsa threshold value ( 5.1 ),  starts to 

increase at a much faster rate, leading tothecollapse of the banking system. Further, 

when 0.2 , the effects of negative marketshocks become marginal since most banksin the 

system already failed. Therefore, in our evaluation experiment of the LASER algorithm, we 

focus on the results in the scenarios when  is between 1.5 and 1.9.  
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5.2 Evaluation of the Link-Aware Systemic Estimation of Risks (LASER) Algorithm 

We thenevaluate the performance of theLASERalgorithmin 1)predicting contagious bank 

failures and 2) determiningcapital injection priorities in the generated systemic risk scenarios. 

Performances of the standard HITS (Equation (2)), node-weighted (Equation (11)) and link- 

weighted HITS(Equation (12)), as well as thewidely used bankliquidity risk measure, capital 

adequacy ratio (CAR), were also studiedfor comparison purposes.Sincebanksystemic risk is 

often in the form of liquidity shortfall under extreme market conditions, CAR is used as a proxy 

measure and defined as follows: 

Assets Weighted Risk

Capital 2Tier  + Capital 1Tier 
RatioAdequacy  Capital   (16) 

where Tier 1 capital is denoted as e  in our clearing payment vector. Tier 2 capitalis 

supplementary capital, which is categorized in the Basel I Accord as undisclosed reserves, 

revaluation reserves, general provisions, hybrid instruments, and subordinated term debt.A 

bank’s risk-weighted assets are fund-based assets such as cash, loans, investments, and other 

assets. 

5.2.1 Predicting Contagious Bank Failures 

In each of the generated scenarios, the data about the correlated bank portfolio links and 

interbank transaction linksis used as input for the LASER algorithm. After simulating the events 

described in Figure 5a, the contagious bank failures that occurred at the time 1Kt  are treated 

as the “unknown” future events to evaluate the prediction capability of LASER.Then LASER 

was set to generate a ranked list of banks in terms of theirauthority scores in adescending order. 

Bank i’s LASER authority score iAu  represents the systemic risk it receives from the banking 
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system. The higher a bank’s authority score is, the more likely it will fail due to liquidity 

shortage caused by other banks’failures and negative market shocks. This ranked list predicts 

which banks are most likely to fail in the generated scenarios. Another four ranked lists were 

generatedbased on the three other HITS-related algorithms and the capital adequacy ratio for 

comparison purposes. We then checkthe banks in these lists with the banks that failed in the 

generated scenarios to evaluate theirprediction performances.We adopted the following 

prediction-quality metricsfrom Breese et al. (1998) for evaluatingLASER and the other four 

methods. Precision score mainly measures the accuracy of the predictions, while recall score 

focuses on the coverage. F-measure, which combines precision and recall, is the harmonic mean 

of these two scores. 

Precision:
)(list  in the banks predicted ofnumber  Total

scenariocurrent   in the failed that banks predicted ofNumber 
Pr


l  (17) 

Recall:
scenariocurrent   in the failuresbank   ofnumber  Total

scenariocurrent   in the failed that banks predicted ofNumber 
lRc   (18) 

F-measure:
ll

ll
l

Rc

Rc
Fm






Pr

Pr2
    (19) 

where l  is a generated scenario. When the shock rate 4.1 , the average bank failure rate 

becomes larger than 15%. Thus we set the length of the prediction list for LASER as 1,110 (i.e., 

15% of the average number of 7,405 reporting banks). We also repeated the experiments for 

three other different settings of  (500, 1500, and 2000) and got similar results, indicating 

LASER performs better than the other four methods. As suggested in Section 5.1.3, our 

experiments focus on scenarios with shock rates ranging from 1.5 to 1.9. For the precision, recall, 
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and F-measure, averagevaluesacross all the generatedscenarios werecalculated as themain 

performance measures for LASER’s predictions of contagious bank failures. 

Table2. Prediction Performance Measures 

Shock 

Rate 
Ranking Methods Precision Recall F-Measure 

1.5 

LASER 0.2297 0.2064 0.2073 

HITS 0.1674 0.1476 0.1455 

Node-Weighted HITS 0.1947 0.1792 0.1783 

Link-Weighted HITS 0.1789 0.1631 0.1658 

Capital Adequacy Ratio 0.1526 0.1387 0.1355 

1.6 

LASER 0.3609 0.1875 0.2378 

HITS 0.2967 0.1529 0.1947 

Node-Weighted HITS 0.3243 0.1688 0.2113 

Link-Weighted HITS 0.3079 0.1594 0.2037 

Capital Adequacy Ratio 0.2673 0.1343 0.1689 

1.7 

LASER 0.5231 0.2765 0.3518 

HITS 0.4632 0.2433 0.3078 

Node-Weighted HITS 0.4815 0.2536 0.3212 

Link-Weighted HITS 0.4694 0.2483 0.3145 

Capital Adequacy Ratio 0.4303 0.2254 0.2858 

1.8 

LASER 0.6832 0.3609 0.4673 

HITS 0.6247 0.3308 0.4217 

Node-Weighted HITS 0.6293 0.3345 0.4259 

Link-Weighted HITS 0.6512 0.3461 0.4405 

Capital Adequacy Ratio 0.5503 0.2829 0.3611 

1.9 

LASER 0.7713 0.4005 0.5201 

HITS 0.6821 0.3608 0.4621 

Node-Weighted HITS 0.7037 0.3742 0.4772 

Link-Weighted HITS 0.7426 0.3963 0.5085 

Capital Adequacy Ratio 0.6327 0.3335 0.4272 
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The results are presented in Table 2. First, we observe that the LASER algorithm outperformed 

the other four methodsinall three performance measuresacross all five shock rates. Second, the 

performances of capital adequacyratioare the worst among all five methods, indicating this 

widely adopted risk measure is less useful in measuring bank systemic riskcomparedwith 

LASER and other methods. Third, both LASER and the two weighted HITS algorithms perform 

better than the standard HITS algorithm. This indicatesthat the weight information based on the 

nodes and linkscan improve the performance of HITS in predicting contagious bank failures. 

These findings together indicate that the LASER algorithm is capable of exploring and 

integrating the underlying financial and networkprinciples. These principles govern the 

emergence and distribution of systemic risk in banking systems through the two types of 

interbank links, which to a certain extent are not fully capturedbyotherHITS-related algorithms 

and the capital adequacy ratio. 

In addition, the performances of the node- and link-weighted HITS largely depend on the 

magnitudes of the simulated market shocks. As Table 2 shows, when shock rates are relatively 

low, ranging from 1.5 to 1.7, the node-weighted HITS algorithm performs better than the 

link-weighted algorithm. But when the shock rates are at 1.8 and 1.9, the link-weighted HITS 

provides better predictions than the node-weighted one. We conjecture that is because when the 

shock rates are relatively low, the correlation relationship among bank portfolios returns is strong 

andremains the main source of systemic risk for individual banks. On the other hand, when the 

magnitude of a market shock reaches a certain level, a significant number of bank portfolio 

valueswere largely reduced and all of them tend to become positively correlated. This sudden 

change may not fit the general patterns of banks’ past correlated portfolio relationships which the 

node-weighted HITS depends on. In such scenarios, interbank payment linksbecome the 
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dominating source of systemic riskfor the banking system.This process is consistent with what 

we observed during the 2007 financial tsunami, that the U.S. banks became extremely cautious 

about their interbank cash flow management after the initial shocks (e.g., the collapse of Lehman 

Brothers), causing a system-wide liquidity shortage. From an individual bank’s perspective, such 

managerial actions are effective in reducing banks’systemic risk. However, from the regulator’s 

perspective, such actions largely increase the system-level liquidity risks. For this reason, 

providing liquidity through capital injections to the banking system is a rational choice and can 

effectively stabilize the bank system.  

5.2.2 Preventing Contagious Bank Failures through Capital Injections 

One of theresearch goals is to explore HowNARMas a BI approach can be used by financial 

regulators to mitigating bank systemic risk, in another word, preventing contagious bank failures. 

When contagious bank failures happen, financial regulatorsneedto provide liquidity to the 

banking systemoften by injectingcapital to key banks. Since the amount of suchcapitalis often 

limited, one critical question for regulators is which banks should receivetheinjections in order to 

prevent further contagious bank failures. The U.S.Troubled Asset Relief Program (TARP) 

implemented in 2008 is a form of capital injections. Although it achieved its goal of providing 

liquidity to the banking system, the regulators have acknowledged it is difficult to evaluate the 

bailout's effectiveness. 

To address this problem, we use the LASER hub score as a measure of the negative influencesa 

bank’s failure may impose on other banks through the two sources of systemic risk – interbank 

payments and correlated bank portfolios. In the scenariosgenerated based on Figure 5b, a certain 

amount of capital is injected to the banks selected based on hub scores from LASER and the 

other three HITS-related algorithms. The amount of capital injection is expressed as a percentage 
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of the value of a bank’s financial asset portfolio, defined as capital injection rate  . Based on 

our domain experts’ opinion, we set  at 100%, 200%, 300%, 400%, and 500% fordifferent 

experimental configurations. The results are consistent across different configurations. When 

 exceeds 500%, the effects of capital injections based on LASER become marginal. Therefore, 

in Table 3 we only reportthe results with capital injection ratesof 100%, 300%, and 500%, and 

shock rates ranging from 1.5 to 1.9. Based on domain experts’ opinion, the number of banks 

selected for capital injection is the same asthe number of banks (i.e., 5% of all banks) being 

shocked in each scenario. We then observe the changes in the average bank failure rates of the 

simulated scenarios with or without capital injections, given everything else is the same. Table 3 

reports the average reduction rates for the scenarios with different experimental settings. The 

reduction rate   for each scenario is calculated as bba  )(  , where a  is the average 

bank failure rate in the scenario without capital injections and b is the one with capital 

injections. The average reduction rate  is calculated across all simulated scenarios. The average 

reduction ratesin bold font indicate the capital injectionstrategy with thebest performanceacross 

all fivemethods.  

Table3.Performance Measures for Different Capital Injection Strategies 

Shock Rate Ranking Methods 
Average Reduction Rate   

%100  %300  %500  

1.5 

LASER -13.23% -21.87% -34.59% 

HITS -10.91% -14.84% -19.32% 

Node-Weighted HITS -12.48% -18.73% -26.51% 

Link-Weighted HITS -12.03% -17.90% -24.89% 

Capital Adequacy Ratio -1.86% -3.12% -3.98% 

1.6 
LASER -14.95% -24.38% -38.31% 

HITS -10.64% -13.82% -18.41% 
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Node-Weighted HITS -12.67% -15.87% -26.53% 

Link-Weighted HITS -13.14% -16.36% -28.82% 

Capital Adequacy Ratio -2.05% -2.93% -3.62% 

1.7 

LASER -16.28% -25.84% -37.81% 

HITS -11.85% -14.12% -18.53% 

Node-Weighted HITS -12.13% -15.24% -25.48% 

Link-Weighted HITS -14.71% -17.97% -30.24% 

Capital Adequacy Ratio -1.48% -3.59% -4.56% 

1.8 

LASER -16.83% -26.24% -38.07% 

HITS -10.77% -14.36% -17.49% 

Node-Weighted HITS -12.37% -15.88% -25.72% 

Link-Weighted HITS -15.12% -18.33% -31.96% 

Capital Adequacy Ratio -1.25% -3.30% -4.29% 

1.9 

LASER -16.31% -27.09% -37.52% 

HITS -11.90% -15.26% -17.92% 

Node-Weighted HITS -11.85% -16.92% -18.33% 

Link-Weighted HITS -14.89% -18.54% -30.22% 

Capital Adequacy Ratio -1.82% -3.88% -4.81% 

 

Table 3 shows that LASER’s average reduction rates are significantly larger than other methods 

at all shock rates and capital injection rates. This means capital injections based on LASER’s hub 

score can save more banks from contagious bank failuresthan the other four methodsin the 

simulated systemic risk scenarios. It was also found thatthe average reduction rates of capital 

injections based on capital adequacy ratio wasmuchsmallerthan the other methods. We 

conjecture this is mainly because CAR is the only method among the five that does not model 

any interbank relationships but only reflects a bank’s own liquidity status. As suggested earlier, 

insystemic risk scenarios, a bank’s survival largely depends on its relationships with other banks. 
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Thus CAR, as a non-relational and static bank risk measure, may not be useful in determininga 

bank’s priority for receiving capital injection.  

In addition, the link-weighted HITS in general saves more banks than the node-weighted HITS 

in the simulatedscenarios. The performance difference between these two becomes larger when 

the shock rate increases. This is consistent with the finding mentioned above, that interbank 

payment links become the dominating systemic risk sources under large market shocks. The 

intuition is that when the values of financial asset portfoliosarealready largely reduced by market 

shocks, banks with large amounts of outgoing payments will become more influential in terms of 

facilitating contagious bank failures. Under such conditionsthe link-weighted HITS, which 

depends on interbank payment links, performs better than the node-weighted HITS in identifying 

key banks for capital injections. Moreover, the average reduction rates for all the methods 

increase as more capital is injected into the banking system. To check for robustness of our 

findings, we repeat the experiment with 9 different threshold values for ij  - s  from 0.1 to 0.9. 

Theresults show that, under the same shock rate, when the threshold value for s  increases 

from 0.1 to 0.7, the precision, recall, and F scores of the LASER algorithm are rather stable 

within a narrow range. When s is larger than 0.8, all three scores decreases. This is mainly 

because large threshold values will drastically reduce the number of constructed correlated 

portfolio links. Based on Equation (1), this reductionthen causes the weighting value )(iG for 

bank i’s authority and hub scores to become closer to the bank’s own variance
22

iiw  . Then the 

heterogeneity of the correlated portfolio relationships cannot be effectively captured by the 

LASER algorithm under such conditions. Therefore, we present the set of representative results 

when setting s as 0.5 (i.e., 5.0ij ). In addition, we also repeat the experiment with 
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differentvalues for shock rates, number of banks to shock, capital injection rates, and numbers of 

banks receiving capital injections. The results are consistent with the ones presented in Table 3, 

that LASER outperforms the other methods in terms of predicting and preventing contagious 

bank failures. 

6. CONCLUSIONS 

In this paper, we develop a BI-based approach called NARM to support central banks 

inmonitoring and mitigating bank systemic risk. We adopt a network view of the modern 

portfolio theory (MPT) to model bank systemic risk. To do so, we conceptualize the network 

principle –Correlative Rank-In-Network Principle (CRINP)–for modelingthe impact of interbank 

relationships on bank systemic risk. By incorporating CRINP and MPT, we developed the 

LASER algorithm to rank banks according to their relative systemic risk levels. We use discrete 

event simulation techniques to evaluate LASERin monitoring and mitigating systemic risk in 

comparison with other methods.Theresults of our simulationshow that LASER outperformsother 

HITS-related algorithms and the capital adequacy ratio. 

In addition, we also found that bank systemic risk levels are largely affected by market 

conditions. In our simulation, the banking system can sustain mild market shocks. However, 

when the magnitude of a market shock exceedsa certain threshold,contagious bank failures will 

happen withaccelerating speed.In such scenarios,systemic riskoriginatingfrom interbank payment 

links becomes more importantthan correlated bank portfolio links in determining a bank’s 

survival.These business insights should help central banks devise better policies and mechanisms 

to prevent breakdown of banking systems. 
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We claim two research contributions. First, our work initiates a new research direction in the 

study of systemic risk at the individual bank level with a network perspective for mitigating 

contagious bank failures in the face of a financial crisis. We developed a BI algorithm 

thatincorporates network and financial principles into a systemic risk analysis framework of a 

banking network. As a result, our work lays the foundation towards a practical approach for 

central banks to better monitor and manage systemic risk. Second, our research has potential 

impacts on the modeling and analysis methods of various business networks. The CRINP 

network principle we conceptualized in this research has instructional value to research in other 

domains such as citation analysis. In addition, our data analysis and simulation methods can be 

applied to similar research areas such as bank stress testing where time series data and business 

networks may be studied to analyze various financial risks. 

We acknowledge that this research has some limitations. First, certain assumptions of modern 

portfolio theory we adopted are simplifications of reality. For instance, MPT assumesthat there 

are no taxes or transaction costs, while real financial assets are often subject to both. Each of 

these assumptions compromises MPT to some degree. Second, LASER requires high-quality 

financial data quality. For central banks that do not have such data on market risk and interbank 

transactions, LASER’sperformance may degrade. Third, our evaluation study focuses on 

commercial banking systems mainly because of data availability issues. However, other types of 

financial institutions like hedge funds are becoming more connected with banking systems and 

should be included in systemic risk monitoring and analysis. 

Our future research willfocus on improving NARM to allow users tovalidate various risk 

management theoriesand methods for applications in systemic risk management.Wealso plan to 

improvethe LASER algorithm for experiments with otherbank datasets fromthe European Union 
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and Hong Kong.In addition, we intend to explore other BI techniques forfurther exploiting the 

network-related information associated with interbank relationships as sources of systemic risk. 
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