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Abstract

We investigate the class of school choice mechanisms that are first-choice
maximal (FCM) (i.e., they match a maximal number of students to their reported
first choices) and first-choice stable (FCS) (i.e., no students form blocking pairs
with their reported first choices). FCM is a ubiquitous desideratum in school
choice, and we show that FCS is the only rank-based relaxation of stability that is
compatible with FCM. The class of FCM and FCS mechanisms includes variants of
the well-known Boston mechanism as well as certain Asymmetric Chinese Parallel
mechanisms. Regarding incentives, we show that while no mechanism in this class
is strategyproof, the Pareto efficient ones are least susceptible to manipulation.
Regarding student welfare, we show that the Nash equilibrium outcomes of these
mechanisms correspond precisely to the set of stable matchings. By contrast, when
some students are sincere, we show that more students may be matched to their
true first choices in equilibrium than under any stable matching. Finally, we
show how our results can be used to obtain a new characterization of the Boston
mechanism (i.e., the most widely used FCM and FCS mechanism). On a technical
level, this paper provides new insights about an influential class of school choice
mechanisms. For practical market design, our results yield a potential rationale
for the popularity of FCM and FCS mechanisms in practice.
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1. Introduction

School choice programs give students an opportunity to express their preferences over

which public schools they would like to attend. Ideally, one would like to match all

students to their respective true first choices. However, this ideal may not be achievable

because schools have limited capacities and some schools may be more popular than

others. Therefore, administrators need to design school choice mechanisms that reconcile

students’ conflicting interests with capacity constraints. Generating high student welfare

is one of the key objectives in this task (Abdulkadiroğlu and Sönmez, 2003).

One way to measure student welfare is to consider the number of students who are

matched to their first choices. This measure is particularly tangible because maximizing

it is an obvious compromise between capacity constraints and the desire to ideally match

all students to their top choices. It comes as no surprise that the share of students who

are matched to their first choices receives attention in the media with headlines such as

‘‘One in six secondary pupils in England doesn’t get first school choice’’1

and

‘‘45% of New York City 8th-graders got into top high school choice [...].’’2

Furthermore, administrators report the share of students who are matched to their first

choices as part of their public communication. For example, Denver Public Schools

prominently feature this measure on the website that informs parents about school

choice.3

In line with the popularity of this measure, many school choice mechanisms in practice

attempt to maximize it, the most prominent example being the Boston mechanism (BM)

(Abdulkadiroğlu and Sönmez, 2003). Arguably, BM owes much of its popularity to the

intuitive way in which it attempts to maximize first choices. The common focus on first

choices motivates our definition of first-choice maximality (FCM), which requires that a

mechanism matches a maximal number of students to their reported first choices.

A second important desideratum in school choice is stability. A matching is called stable

if it is non-wasteful (i.e., no student would rather be matched to a school with unfilled

1Sally Weale (June 14, 2016). The Guardian. Retrieved October 10, 2016: www.theguardian.com
2Sophia Rosenbaum and Erica Pearson (March 11, 2014). New York Daily News. Retrieved October

10, 2016: nydailynews.com
3Denver Public Schools Website. Retrieved October 10, 2016: schoolchoice.dpsk12.org/schoolchoice/
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seats), individually rational (i.e., no matched student would rather be unmatched), and

if it eliminates justified envy (i.e., if a student prefers a different school to her match,

then any student matched to that other school must have higher priority4) (Balinski

and Sönmez, 1999). Equivalently, stability can be defined as the absence of blocking

pairs.5 A student in a blocking pair may feel as though she has been treated unfairly by

the mechanism. On top of that, she may even have a basis for pursuing legal actions

against the school district.6 Administrators would naturally try to avoid both, perceived

unfairness and the risk of legal actions. Stability is therefore a common criterion in

school choice.

Our first insight in this paper is that FCM and stability are incompatible. This raises

the question whether there exists a relaxed notion of stability that can serve as a useful

second best but is not in conflict with FCM. We answer this question in the affirmative:

A matching is called first-choice stable (FCS) if no student forms a blocking pair with

her reported first choice (but students may form blocking pairs with other choices). We

show that among all rank-based relaxations of stability, FCS is the only one that is

compatible with FCM.7

This insight gives rise to a natural class of school choice mechanisms: We start with

the ubiquitous desideratum to maximize the number of students who are matched to

their first choices (i.e., FCM). Given this, it would be unreasonable to match these first

choices in a way that violates priorities; thus, we also require FCS. On the other hand,

all more demanding notions of stability are in conflict with FCM. This motivates our

analysis of the class of mechanisms that satisfy both FCM and FCS. For the sake of

brevity, we refer to these mechanisms as first-choice (FC) mechanisms.

The class of FC mechanisms includes all commonly employed variants of the Boston

mechanism (e.g., with varying tie-breakers, varying limits on the length of preference

lists, and where filled schools are or are not skipped in the application process). Such

4Priorities are common in school choice. For example, a school may grant priority to students whose
siblings attend the same school, who live nearby, or based on grades (Abdulkadiroğlu et al., 2006).

5A student-school-pair pi, sq is blocking if i would prefer s to her current match and s has unfilled
seats, s is i’s outside option, or some student who is matched to s has lower priority at s than i.

6A Wisconsin student’s lawsuit succeeded on the grounds of justified envy (Abdulkadiroğlu and
Sönmez, 2003). The admission to medical degree programs in Germany is organized via a centralized
mechanism (Westkamp, 2013). Rejected applicants sometimes obtain a seat by suing universities for
leaving seats unfilled. These lawsuits succeed on the grounds of wastefulness.

7A rank-based relaxation of stability requires that there are no blocking pairs for which the respective
school has a certain rank in the respective student’s preference order.
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mechanisms are used in many school districts, including Minneapolis, Seattle, Lee

County (Kojima and Ünver, 2014), San Diego, Amsterdam (until 2014) (de Haan et al.,

2015), Wake County (until 2015) (Dur, Hammond and Morrill, 2016), and in Nordrhein

Westfalen and Freiburg (Germany) (Basteck, Huesmann and Nax, 2015). Asymmetric

Chinese Parallel mechanisms with e0 “ 1 also belong to this class and are used for

college admissions in the Chinese Beijing, Gansu, and Shandong provinces (Chen and

Kesten, 2016a). A plausible motivation for using FC mechanisms is the desire to achieve

FCM and FCS. As market designers, we are of course aware of the fact that strategic

misreporting by students may impede this objective. Nonetheless, administrators may

find FC mechanisms appealing, for example, if they believe that students will report

their preferences truthfully despite contrary incentives.8 Moreover, even if students

strategize, administrators may prefer FC mechanisms for cosmetic reasons (e.g., if they

are driven by other considerations such as favorable media coverage).

For market designers, the question arises whether and to what extent FC mechanisms

actually achieve the intended desiderata to match a maximal number of students to

their true first choices and to avoid blocking pairs of students with their respective true

first choices. This research question is the focus of our present paper. To answer it, we

proceed in two steps:

Step 1. We identify the incentives for students under FC mechanisms (by comparing

these mechanisms by their vulnerability to manipulation).

Step 2. We investigate how strategic reporting by students affects outcomes (by studying

the Nash equilibria of the induced preference revelation games).

Regarding incentives (Step 1), our first insight is that FCM alone is already incom-

patible with strategyproofness, even without the additional restriction of FCS. Despite

this incompatibility, some FC mechanisms may invite more strategic misreporting than

others. Towards understanding these differences, we employ the concept of comparing

mechanisms by their vulnerability to manipulation, introduced by Pathak and Sönmez

8For example, the Teach for America (TfA) program uses a non-strategyproof mechanism to match
teachers-to-be to teaching positions. However, TfA administrators feel that the use of this mechanism
is justified because participants would find it hard to acquire the skills and information necessary to
successfully manipulate the mechanism (Featherstone, 2015).
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(2013).9 We show that all Pareto efficient FC mechanisms are manipulable at exactly

the same problems and are therefore equivalent in this sense. Moreover, we show that

for any Pareto inefficient FC mechanism, there exists a Pareto efficient FC mechanism

that Pareto dominates the original mechanism but is also at most as manipulable.

Our results have two significant consequences: First, the two most widely studied FC

mechanisms are the classic Boston mechanism (BM) (Abdulkadiroğlu and Sönmez, 2003)

and the adaptive Boston mechanism (ABM) (Alcalde, 1996; Miralles, 2008; Dur, 2015;

Harless, 2015; Mennle and Seuken, 2017b). One would intuitively suspect ABM to have

better incentive properties than BM. However, since both mechanisms are Pareto efficient,

they are manipulable at the same problems. Thus, surprisingly, the intuitive difference

in their incentive properties cannot be formalized via the comparison by vulnerability to

manipulation.10 The second consequence of our results pertains to FC mechanisms used

in practice that are not Pareto efficient, such as Asymmetric Chinese Parallel mechanisms

(Chen and Kesten, 2016a). Our results imply that these mechanisms are more manipulable

and less efficient than necessary, even if administrators are restricted to only using FC

mechanisms. Thus, the motivation for using Pareto inefficient FC mechanisms must

rely on other considerations besides incentives. Otherwise, unambiguous improvements

to these mechanisms would be possible, even within the class of FC mechanisms.

Regarding the impact of strategic behavior on outcomes (Step 2), we show that

the set of Nash equilibrium outcomes of any FC mechanism corresponds precisely to

the set of matchings that are stable with respect to the true preferences. This means

that the equilibrium outcomes of any FC mechanism are first-choice stable with respect

to the true preferences, but the may not match a maximal number of students to their

true first choices.11 Our result generalizes the main result of Ergin and Sönmez (2006),

who showed this correspondence for BM. For market designers, the most important

consequence of our result is that in markets where all students are strategic, there is no

reason for using an FC mechanism instead of the student-proposing deferred-acceptance

9A mechanism ϕ is at most as manipulable as another mechanism ψ if the set of problems where some
student can benefit from misreporting under ϕ is a subset of the respective set under ψ.

10ABM differs from BM in that students automatically skip exhausted schools in the application process
under ABM, while under BM they apply to exhausted schools (thereby wasting some rounds). More
nuanced assumptions are required to establish a formal understanding of the different incentive
properties of BM and ABM, e.g., when school may have zero capacity or find some students
unacceptable (Dur, 2015) or when priorities are random (Mennle and Seuken, 2017b).

11This follows because stability implies FCS but is incompatible with FCM.
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(DA) mechanism (Abdulkadiroğlu and Sönmez, 2003): DA produces the student-optimal

stable matching, which is the unique stable matching that Pareto dominates all other

stable matchings, and DA is strategyproof. In contrast, FC mechanisms merely produce

some stable matchings, and they do this only subject to a weaker solution concept.

Our observations so far pertain to the case when all students strategize. In practice,

however, students may exhibit varying levels of strategic sophistication. For example,

it may be cognitively challenging to determine a beneficial misreport, or acquiring

the necessary information may be costly. Experimental results suggest that under

BM, a significant share of the participants report their preferences truthfully despite

incentives to misreport (Chen and Sönmez, 2006; Chen and Kesten, 2016b), and a lack

of information further increases this share (Pais and Pinter, 2008).12 We therefore

follow Pathak and Sönmez (2008), who considered mixed problems with two types of

students: Sincere students report their preferences truthfully, independent of incentives,

while sophisticated students recognize the strategic aspect of the matching process. For

these mixed problems, we identify the Nash equilibrium outcomes of FC mechanisms.

Specifically, we show that, from the perspective of the sophisticated students, the set

of Nash equilibrium outcomes corresponds to the set of matchings that are stable with

respect to the true preferences and certain augmented priorities.13 Our result partially

generalizes the result of Pathak and Sönmez (2008), who showed this correspondence for

BM.14 Our result also implies the existence of equilibrium outcomes that are preferred

by all sophisticated students to any other equilibrium outcomes.

With these results at our disposal, we can conclusively answer our main research

question: To what extent do FC mechanisms actually achieve FCM and FCS?

Towards FCS, we show that all equilibrium outcomes of any FC mechanism are FCS

with respect to the true preferences. Thus, FC mechanisms actually implement FCS,

independent of which students strategize and independent of which equilibrium is chosen.

12In laboratory experiments conducted by Chen and Sönmez (2006), this share was 13%, and it increased
to 28% when priorities were random. Chen and Kesten (2016b) observed shares between 23% and 46%
in similar experiments, and Pais and Pinter (2008) found that withholding information significantly
increased these shares from 47% to 87%.

13Augmented priorities arise as an adjustment of the original priorities. They account for the positions
in which students rank schools and whether or not students are sophisticated (see Section 6.1).

14The correspondence proven by Pathak and Sönmez (2008) holds for all students. Our restriction to
the perspective of sophisticated students is necessary because FC mechanisms are identified by how
they match students to their reported first choices but are unrestricted in how they match students
to other choices (see Lemma 1). In equilibrium, this freedom only affects sincere students.
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Towards FCM, we isolate the effect of any individual student’s decision (say i1) whether

to strategize or to report truthfully by comparing the respective sophisticated-student-

optimal equilibrium outcomes. We show that under any FC mechanism, i1 prefers being

sophisticated to being sincere, all other sophisticated students prefer i1 being sincere, and

for sincere students the difference is ambiguous with one notable exception: Any student

who is matched to her true first choice when i1 is sophisticated is still matched to her true

first choice when i1 is sincere. Thus, the number of true first choices matched in strategic-

student-optimal equilibrium outcomes is lowest if all students strategize, increases in

mixed problems with more sincere students, and is maximal when all students are sincere.

In this sense, FC mechanisms have the potential to match more true first choices in

equilibrium than strategyproof alternatives like DA. This prediction is consistent with

experimental findings that BM and ACPM both match significantly more students to

their true first choices than DA (Result 4 of Chen and Kesten (2016b)).

Finally, we show how our results regarding the properties of FC mechanisms can be

used to obtain a new characterization of BM (i.e., the most widely used FC mechanism).

To this end, we first relax FCM to best-choice-maximality, which requires the mechanism

to maximize the number of students matched to their reported best choice that is

attainable under some matching. Similarly, we relax FCS to best-choice-stability, which

requires the mechanism to respect each student’s priority at her best attainable choice.

Lastly, we follow Kojima and Ünver (2014), and require a mechanism to be consistent,

i.e., if we remove a subset of students with their assignments and update the remaining

seats, then the remaining students are assigned to the same schools as before. Using our

results obtained for the class of FC mechanisms we then show that BM is the unique

best-choice-stable, best-choice-maximal, and consistent mechanism.

For market designers, our main results imply that the use of FC mechanisms in

practice may be justified if FCM and FCS are primary desiderata and if a sufficiently

large share of the students can be expected to report their preferences truthfully. Our

characterization result of BM shows that, within the class of FC mechanisms, BM stands

out a little more than the others, which may be a potential rationale for its popularity

in practice.
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2. Preliminaries

2.1. Formal Model

A school choice problem is a tuple pI, S, q, P,ąq with a finite set of students I “

ti1, . . . , inu and a finite set of schools S “ ts1, . . . , smu. q “ pqsqsPS is the vector of

school capacities (i.e., qs is the number of seats available at school s), P “ pPiqiPI is the

preference profile in which each Pi is the strict preference order of student i over the

schools in S and the outside option, denoted by H. ą “ pąsqsPS is the priority profile

in which each ąs is the priority order of school s over students in I. s Pi s
1 means that

student i strictly prefers school s to school s1, and i ąs i1 means that student i has

priority over student i1 at school s. We assume that there is at least one seat at each

school (i.e., qs ě 1 for all s P S) and that all students can be matched to their outside

option (i.e., qH “ n). For a preference order Pi, the corresponding weak preference order

is denoted by Ri (i.e., s Ri s
1 if either s Pi s

1 or s “ s1). Throughout the paper, we fix I,

S, and q, and we use pP,ąq to denote a specific problem.

A matching is a function µ : I Ñ S Y tHu. For a given matching µ, µpiq is the school

to which student i is matched, and µ´1psq is the set of students who are matched to

schools s. We focus on feasible matchings (i.e., |µ´1psq| ď qs for every s P S Y tHu),

and we simplify notation by writing µi and µs for µpiq and µ´1psq, respectively.

For a problem pP,ąq and matchings µ and ν, we say that µ weakly Pareto dominates ν

if µi Ri νi for all students i P I, and µ Pareto dominates ν if µ weakly Pareto dominates

ν and µi1 Pi1 νi1 for at least one student i1 P I. The matching µ is Pareto efficient if it is

not Pareto dominated by any other matching, µ is individually rational if µi Ri H for

all students i P I, µ is wasteful if there exists some student i P I and some school s P S

such that |µs| ă qs but s Pi µi, and µ is non-wasteful if it is not wasteful. A student

i P I has justified envy (under µ) if there exists another student i1 P I and a school s P S

such that s Pi µi, µi1 “ s, and i ąs i1, and µ is fair if no student has justified envy.

Finally, µ is stable if it is individually rational, non-wasteful, and fair. Observe that for

any unstable matching µ, there exists at least one pair pi, sq P I ˆ pS Y tHuq such that

s Pi µi and |µs| ă qs (if µ is wasteful), or s “ H (if µ is not individually rational), or

there exists a student i1 P I with µi1 “ s and i ąs i1 (if i has justified envy). Any such

student-school pair is called a blocking pair. Obviously, the matching µ is stable if and
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only if there exist no blocking pairs. Throughout the paper, we employ this equivalent

definition of stability to simplify definitions and proofs.

A mechanism ϕ is a mapping that receives a problem pP,ąq as input and selects

a matching, denoted by ϕpP,ąq. We denote by ϕipP,ąq the school to which student

i is matched under ϕpP,ąq. A mechanism ϕ is called Pareto efficient/individually

rational/non-wasteful/fair/stable if it selects matchings with the respective property for

all problems. The mechanism ϕ Pareto dominates another mechanism ψ if the matching

ϕpP,ąq weakly Pareto dominates the matching ψpP,ąq for all problems pP,ąq and

this dominance is not weak for at least one problem. Observe that these properties

are formulated in terms of how the mechanisms handle reported preferences. However,

students may lie about their preferences so that the input to the mechanism may differ

from the true problem. Regarding incentives, a mechanism ϕ is called strategyproof

if, for all problems pP,ąq, all students i P I, and all preference orders P 1i , we have

ϕipP,ąq Ri ϕippP
1
i , P´iq,ąq where P´i “ pPjqj‰i are the preferences of all students

except i.

Finally, we introduce some auxiliary notation: Given a problem pP,ąq, let choicePi
pkq

be the kth choice of student i according to Pi. For a matching µ, let Ipµ, k, P q be the

set of students who are matched to their kth choice under the matching µ; formally,

Ipµ, k, P q “ ti P I : choicePi
pkq “ µiu. Thus, IpϕpP,ąq, k, P q is the set of students who

are matched to their kth choice (according to P ) when the mechanism ϕ is applied to

the problem pP,ąq.

2.2. School Choice Mechanisms

In this section, we describe common school choice mechanisms. Table 1 provides an

overview of their properties as well as examples of their use in practice.

The Boston mechanism (BM) (Abdulkadiroğlu and Sönmez, 2003) works in rounds.

In the first round, all students apply to their respective first choices, and each school

permanently accepts applications from students in order of priority until all applications

are accepted or until all seats are filled. Students whose applications are not accepted

enter the second round where they apply to their respective second choices. Again, schools

accept applications into unfilled seats by priority and reject all remaining applications

once all seats are filled. This process continues (i.e., students who were rejected in round
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Mechanism SP PE ST FCM FCS Examples of use in practice

BM X X X Minneapolis, Seattle, Lee County, San Diego
ABM X X X Amsterdam (until 2014), Nordrhein Westfalen
DA X X X New York, Boston, Mexico City
ACPM X Various Chinese provinces
ACPM, e0 “ 1 X X Bejing, Gansu, and Shangdong provinces
TTC X X New Orleans Recovery School District (2012)

Table 1: Mechanisms, their properties, and examples of their use in practice; strate-
gyproof (SP), Pareto efficient (PE ), stable (ST ).15

k ´ 1 apply to their kth choices in round k) until no school receives new applications.

The adaptive Boston mechanism (ABM) (Alcalde, 1996; Miralles, 2008; Dur, 2015;

Harless, 2015; Mennle and Seuken, 2017b) is similar to BM, except that students who

are rejected in round k ´ 1 apply to their respective most-preferred school that still

has at least one unfilled seat in round k. Students thus automatically skip schools in

the application process when applications to these schools are bound to be rejected,

independent of priority.

Under the Student-Proposing Deferred Acceptance (DA) mechanism (Gale and Shap-

ley, 1962; Abdulkadiroğlu and Sönmez, 2003), students also apply to schools in rounds,

and priorities determine which applications are accepted. However, acceptances are

tentative rather than permanent. This means that students can be rejected by a school

where they were tentatively accepted in a previous round if other students apply in later

rounds who have higher priority. Newly rejected students apply to their most preferred

school that has not yet rejected them. The application process ends when no school

receives any new applications.

Asymmetric Chinese Parallel mechanisms (ACPM) (Chen and Kesten, 2016a) are

mechanisms that combine elements of BM and DA. They are parametrized by a vector

of integers pe0, e1, . . .q with ek ě 1. Initially, all matches are tentative as under DA.

However, unlike under DA, students who are rejected by their e0
th choices pause in

15Sources: (Abdulkadiroğlu, Pathak and Roth, 2005; Abdulkadiroğlu et al., 2006; Kojima and Ünver,
2014; de Haan et al., 2015; Basteck, Huesmann and Nax, 2015; Chen and Pereyra, 2015; Chen and
Kesten, 2016a), and Andrew Vanacore (April 16, 2012). The Times-Picayune. Retrieved March 22,
2017: www.nola.com
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the application process. When all students are either matched tentatively or have been

rejected by their e0
th choices, all tentative matches are finalized. In the next phase,

the rejected students continue to apply but pause again when they have been rejected

by their pe0 ` e1q
th choices. The tentative matches are again finalized if all students

are either tentatively accepted at some school or pausing. This process continues until

all students are matched or have been rejected by all schools on their preference list.

Observe that ACPM specifies a class of mechanisms. This class subsumes BM (for ek “ 1

for all k) and DA (for e0 ě |S|).

The Top Trade Cycles (TTC) mechanism (Abdulkadiroğlu and Sönmez, 2003) works

by forming a directed graph: Each student points to her most-preferred school with

unfilled seats, each school points to the student who has highest priority at that school,

and the outside option points to all students who are pointing to it. In each step, a cycle

of this graph is selected and implemented (i.e., each student in the cycle is permanently

matched to the school to which she is pointing, and the respective seats and students

are removed from the mechanism). Students and schools then adjust where they are

pointing and the process repeats. The process ends when all students have been removed.

3. Setting the Stage: First-Choice Maximality and

First-Choice Stability

As we have argued in the introduction, the number of students who are matched to

their (reported) first choices receives a lot of attention. Following this observation, we

formally define first-choice maximality.

Definition 1. Given a problem pP,ąq, a matching µ is first-choice maximal if there

exists no other matching ν such that |Ipµ, 1, P q| ă |Ipν, 1, P q|. A mechanism ϕ is first-

choice maximal (FCM) if, for all problems pP,ąq, the matching ϕpP,ąq is first-choice

maximal.16

Next, we define rank-based relaxations of stability.

16FCM is a strictly weaker requirement than the axiom that a mechanism favors higher ranks (Kojima
and Ünver, 2014): Specifically, a mechanism is FCM if and only if it favors the first rank.
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Definition 2. Given a problem pP,ąq and an integer k P t1, . . . ,mu, a matching µ is

kth-choice stable if there exists no blocking pair pi, sq P I ˆ pS Y tHuq where s is the kth

choice of i, and µ is first-choice stable if this holds for k “ 1. A mechanism is kth-choice

stable (first-choice stable (FCS)) if, for all problems pP,ąq, the matching ϕpP,ąq is

kth-choice stable (first-choice stable).

We observe that FCM and FCS are compatible: It is easy to see that BM satisfies

both properties. On the other hand, FCM by itself is already a severe restriction: As the

next example shows, it is incompatible with strategyproofness, with stability, or even

with kth-choice stability for k ě 2.

Example 1. There are three students I “ t1, 2, 3u, two schools S “ ta, bu with a single

seat each. The preferences and priorities are

Pi for i P I : a Pi b Pi H,

ąs for s P S : 1 ąs 2 ąs 3.

Let ϕ be an FCM mechanism. By feasibility, ϕ must leave one student unmatched.

Without loss of generality, suppose that this is student 3 (i.e., ϕ3pP,ąq “ H). If student

3 reports b P 13 a P
1
3 H instead of reporting P3 truthfully, then ϕ must match student 3

to school b. Since ϕ3ppP
1
3, P´3q,ąq “ b P3 H “ ϕ3pP,ąq, P

1
3 is a beneficial misreport for

student 3. Thus, ϕ cannot be strategyproof.

Next, observe that at the problem ppP 13, P´3q,ąq, there exists a unique stable matching

µ where µ1 “ a, µ2 “ b, and µ3 “ H. However, any FCM mechanism ϕ must match

student 3 to school b, so ϕ cannot be stable. A straightforward extension illustrates that

ϕ also violates kth-choice stability for any k ě 2: Consider a problem with k schools

S “ ts1, . . . , sku with a single seat each, and k ` 1 students I “ t1, 11, 2, . . . , ku. The

preferences and priorities are

Pi for i P t1, 11u : s1 Pi s2 Pi . . . Pi sk Pi H,

Pi for i P t2, . . . , ku : si Pi . . . ,

ąs for s P S : 1 ąs 11 ąs 2 ąs . . . ąs k.

FCM implies that ϕ matches each student i P t2, . . . , ku to si. Thus, either student 1 or
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student 11 is unmatched. Then that student forms a blocking pair with her kth choice.

It follows from Example 1 that among all rank-based relaxations of stability, FCS is

the only one compatible with FCM. For the remainder of this paper, we therefore focus

on the class of mechanisms that are both FCM and FCS.

Definition 3. A mechanism is a first-choice (FC) mechanism if it is FCM and FCS.

For example, BM and ABM are both FCM and FCS and known to be Pareto efficient,

but they violate strategyproofness and stability. ACPMs with e0 “ 1 are also FCM and

FCS. Their first phase is the same as the first round of BM, and the matches made in

this phase are not undone in subsequent phases. These mechanisms thus satisfy FCM

and FCS (by Lemma 1 in Section 4). Moreover, as Chen and Kesten (2016a) pointed out,

ACPMs are not Pareto efficient unless ek “ 1 for all k, in which case they are equivalent

to BM, and they are not stable unless e0 ą m, in which case they are equivalent to DA.

DA is stable and therefore FCS. However, FCM is incompatible with stability, so DA

cannot be FCM. It is straightforward to see that TTC is neither FCM nor FCS, and it

is known to be strategyproof and Pareto efficient but unstable.17

4. Incentives under FC Mechanisms

As Example 1 illustrates, no FC mechanism is strategyproof. However, some FC

mechanisms may be more manipulable than others. Towards understanding these

differences, we employ the concept of comparing mechanisms by their vulnerability to

manipulation introduced by Pathak and Sönmez (2013), which we restate formally before

presenting our results.

Definition 4. A mechanism ϕ is manipulable at pP,ąq if there exist a student i P I and

a preference order P 1i such that ϕippP
1
i , P´iq,ąq Pi ϕipP,ąq. For two mechanisms ϕ and

ψ, we say that ϕ is at least as manipulable as ψ if, for all problems pP,ąq, manipulability

of ψ at pP,ąq implies manipulability of ϕ at pP,ąq. ϕ is more manipulable than ψ if in

addition there exists a problem where ϕ is manipulable but ψ is not.

17TTC violates FCM at the problem ppP 13, P´3q,ąq from Example 1, and it violates FCS at the same
problem if the priorities of school a are changed to 3 ąa 2 ąa 1.
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In words, the comparison by vulnerability to manipulation classifies mechanisms by

the sets of problems at which they are manipulable. If ϕ is at least as manipulable as ψ,

then the set of problems at which ϕ is manipulable is a superset of the set of problems

where ψ is manipulable, and ϕ is more manipulable if it is a strict superset.

Our next results, Theorem 1 and Proposition 1, reveal how FC mechanisms compare

in terms of their vulnerability to manipulation. First, we show that all Pareto efficient

FC mechanisms are manipulable at exactly the same problems. Second, we show that

any Pareto inefficient FC mechanism is manipulable at a (possibly strict) superset of

these problems. In this sense, the Pareto efficient FC mechanisms form a minimally

manipulable subset within the class of FC mechanisms.

Theorem 1. Let ϕ and ψ be two Pareto efficient FC mechanisms. Then ϕ is at least

as manipulable as ψ and vice versa.

Proof. We state two lemmas, which we also use in other proofs. Recall that choicePi
pkq

denotes the kth choice school according to Pi and that Ipµ, k, P q denotes the set of

students who are matched to their kth choice according to P under µ.

Lemma 1. ϕ is an FC mechanism if and only if IpϕpP,ąq, 1, P q “ IpBMpP,ąq, 1, P q

for all problems pP,ąq.

Lemma 2. Given an FC mechanism ϕ, a problem pP,ąq, and a subset of students

A Ď I, let pP 1A, P´Aq be a preference profile such that choiceP 1i p1q “ ϕipP,ąq for all

i P A. Then, ϕippP
1
A, P´Aq,ąq “ ϕipP,ąq for all i P A.

The proofs of these Lemmas are given in Appendixes A and B. Lemma 1 characterizes

the set of FC mechanisms as those mechanisms that match exactly the same students to

their reported first choices as BM; but otherwise they are free in how they match the

remaining students. Lemma 2 shows that when some students change their reported

preferences by ranking first the school to which they are matched under an FC mechanism,

then this mechanism continues to match these students to the same schools.18

18This corresponds to a relaxed notion of Maskin monotonicity for FC mechanisms: The preference
profile pP 1A, P´Aq is a monotonic transformation of P at ϕpP,ąq, and under any FC mechanism the
matching of the students in A may not change. Observe that this property is independent of the
rank respecting invariance property, a different relaxation of Maskin monotonicity that Kojima and
Ünver (2014) used for their axiomatic characterization of BM.
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Next, let ϕ be manipulable at pP,ąq. Then ϕippP
1
i , P´iq,ąq Pi ϕipP,ąq for some

student i P I and some preference order P 1i . Without loss of generality, let s “

ϕippP
1
i , P´iq,ąq be the most preferred school according to Pi at which i can obtain a

seat by misreporting (and possibly s “ H). By Lemma 2, we can choose P 1i such that s

is ranked first. Observe that s cannot be the first choice under Pi (otherwise, P 1i would

not be a strictly beneficial deviation for i). There are two cases:

Case 1: ϕpP,ąq “ ψpP,ąq. Then IpϕppP 1i , P´iq,ąq, 1, P q “ IpψppP 1i , P´iq,ąq, 1, P q

by Lemma 1. Since i P IpϕppP 1i , P´iq,ąq, 1, P q and s is i’s first choice under P 1i , we

have that i P IpψppP 1i , P´iq,ąq, 1, P q and ψippP
1
i , P´iq,ąq “ s. Hence, ψippP

1
i , P´iq,ą

q Pi ψipP,ąq, that is, i can manipulate ψ at pP,ąq.

Case 2: ϕpP,ąq ‰ ψpP,ąq. Since both ϕpP,ąq and ψpP,ąq are FCS and Pareto

efficient, there exists a student i1 P I such that ϕi1pP,ąq ‰ ψi1pP,ąq and ϕi1pP,ą

q Pi1 ψi1pP,ąq. Let s1 “ ϕi1pP,ąq and let P 1i1 be a preference order in which s1 is ranked

first. Then ϕi1ppP
1
i1 , P´i1q,ąq “ s1 by Lemma 1, and IpϕppP 1i1 , P´i1q,ąq, 1, pP

1
i1 , P´i1qq “

IpψppP 1i1 , P´i1q,ąq, 1, pP
1
i1 , P´i1qq by Lemma 2. Hence, ψi1ppP

1
i1 , P´i1q,ąq “ s1 Pi1 ψi1pP,ąq,

that is, i1 can manipulate ψ at pP,ąq.

In conclusion, manipulability of ϕ at pP,ąq implies manipulability of ψ at pP,ąq.

Symmetrically, it follows that if ψ is manipulable at some problem, then so is ϕ.

While Theorem 1 pertains to Pareto efficient FC mechanisms, the next proposition

closes the remaining gap for Pareto inefficient FC mechanisms.

Proposition 1. Let ϕ be an FC mechanism that violates Pareto efficiency. Then there

exists a mechanism ψ with the following properties:

1. ψ is a Pareto efficient FC mechanism,

2. ψ Pareto dominates ϕ,

3. ϕ is at least as manipulable as ψ.

The formal proof is given in Appendix C. Here, we explain the intuition for the proof:

If ϕ is not Pareto efficient, then there exists at least one problem pP,ąq where the

matching ϕpP,ąq is Pareto dominated by some other matching µ. We can define a new

mechanism ϕ to be exactly the same as ϕ except at the problem pP,ąq, where we set
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Figure 1: Illustration of Theorem 1 and Proposition 1.

ϕpP,ąq “ µ. It is straightforward to show that ϕ is FCM and FCS and that it Pareto

dominates ϕ. Careful inspection reveals that ϕ is manipulable only at problems where ϕ

is manipulable (but possibly at fewer problems). Iterated application of this argument

yields a Pareto efficient mechanism ψ that satisfies all three properties.

The Venn diagram in Figure 1 illustrates the results of Theorem 1 and Proposition

1. All Pareto efficient FC mechanisms (i.e., mechanisms in the intersection of all three

areas) are equivalent when comparing them by their vulnerability to manipulation. The

horizontal arrow on the left symbolizes this equivalence. Moreover, any Pareto inefficient

FC mechanism (i.e., a mechanism in the intersection of the blue and red areas at the

bottom) is at least as manipulable as some (and therefore any) Pareto efficient FC

mechanism. The vertical arrow on the right symbolizes this relationship.

Theorem 1 and Proposition 1 have two implications for market design: First, recall

that under BM, students apply to their kth choices in the kth round, even if these schools

have no more unfilled seats. Students can therefore strategize by omitting full schools in

their ranking. In contrast, under ABM, students automatically skip such schools and

apply to their most preferred school with one or more unfilled seats. While students may

still strategize in other ways, the above-mentioned manipulation becomes unnecessary.

Thus, intuitively, we would expect ABM to have better incentive properties than BM.

Surprisingly, this difference does not surface because both mechanism are equivalent in
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this sense by Theorem 1.19

Second, ACPMs with e0 “ 1 are Pareto inefficient (unless ek “ 1 for all k, in which

case they are equivalent to BM), but they are used in practice (e.g., for college admission

in the Chinese Beijing, Gansu, and Shandong provinces). Proposition 1 shows that

the choice of such mechanisms cannot be justified by the desiderata FCM, FCS, and

‘‘good’’ incentives alone, because administrators could choose a different FC mechanism

that simultaneously yields unambiguous improvements in terms of student welfare and

robustness to manipulation.

This concludes Step 1, our discussion of incentives under FC mechanisms.

5. Equilibrium under FC Mechanisms

Recall that no FC mechanism is strategyproof. We must therefore be concerned about

the impact of strategic reporting by students. Following prior work, we identify the

equilibrium outcomes of the preference revelation game induced by the mechanisms and

use Nash equilibrium under complete information as the main solution concept (Ergin

and Sönmez, 2006; Pathak and Sönmez, 2008; Haeringer and Klijn, 2009; Jaramillo, Kayi

and Klijn, 2016).

Definition 5. Given a mechanism ϕ and a problem pP,ąq, a preference profile P ˚ is

a Nash equilibrium (of ϕ at pP,ąq) if, for all students i P I and all preference orders

P 1i ‰ P ˚i , we have that ϕipP
˚,ąq Ri ϕippP

1
i , P

˚
´iq,ąq.

In words, no student can be matched to a school that she strictly prefers by unilaterally

deviating from the equilibrium profile.20

19The indistinguishability of BM and ABM is even more severe: It cannot be recovered via the as-
strongly-manipulable-as relation, and for random priorities, even the weak distinction by vulnerability
to manipulation is inconclusive (see Appendices G and H). More nuanced approaches are needed to
obtain meaningful distinctions (see, e.g., (Dur, 2015; Mennle and Seuken, 2017b)).

20The preference revelation game induced by ϕ at pP,ąq is a simultaneous move game pN,O, τq, where
the students are the agents (i.e., N “ I), the outcomes are the matchings that are possible under

ϕ (i.e., O “ tϕp pP ,ąq | pP preference profileu), and for each agent i, the weak preference order τi
over outcomes is induced by the respective student’s weak preference order over schools (i.e., for
outcomes x, y P O, x τi y if and only if xi Ri yi).

Observe that we simplify the formal exposition of Nash equilibrium in two ways: First, we use
the term Nash equilibrium of ϕ at pP,ąq to mean a Nash equilibrium of the induced preference
revelation game. Second, we consider preference profiles instead of strategy profiles. This is without
loss of generality because we consider only direct revelation mechanisms.
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For the special case of BM, Ergin and Sönmez (2006) showed that the Nash equilibrium

outcomes of BM correspond precisely to the matchings that are stable with respect to

the true preferences and priorities.

Fact 1 (Theorem 1 of Ergin and Sönmez (2006)). Given a problem pP,ąq, a matching

µ is stable if and only if there exists a Nash equilibrium P ˚ of BM at pP,ąq with

µ “ BMpP ˚,ąq.

Our next theorem shows that the same result holds for all FC mechanisms.

Theorem 2. Given a problem pP,ąq and an FC mechanism ϕ, a matching µ is stable at

pP,ąq if and only if there exists a Nash equilibrium P ˚ of ϕ at pP,ąq with µ “ ϕpP ˚,ąq.

Proof. Necessity. Let P ˚ be a Nash equilibrium. Assume towards contradiction that

the matching ϕpP ˚,ąq is not stable wrt. pP,ąq. Then there exist i P I and s P S Y tHu

such that s Pi ϕipP
˚,ąq and either |ϕspP

˚,ąq| ă qs, or there exists i1 P I such that

ϕi1pP
˚,ąq “ s and i ąs i1. Let P 1i be a preference order with choiceP 1i p1q “ s. When

BM is applied to the preference profile pP 1i , P
˚
´iq, i is matched to s in the first round. By

Lemma 1 we get ϕippP
1
i , P

˚
´iq,ąq “ BMippP

1
i , P

˚
´iq,ąq “ s. Therefore, P ˚i is not a best

response to P ˚´i for i, a contradiction to the assumption that P ˚ is a Nash equilibrium.

Sufficiency. Let µ be stable wrt. pP,ąq. Consider a preference profile P ˚ where each

student i ranks µi first. Since µ is feasible, ϕ produces the matching µ in the first step

when applied to pP ˚,ąq by Lemma 1. Moreover, P ˚ is a Nash equilibrium of ϕ: Assume

towards contradiction that some student i can improve her match by deviating from P ˚

(i.e., get matched to a school s). By Lemma 2, she can do so by ranking s first. Then i

either displaces another student with lower priority at s, or s has unfilled seats under µ.

In both cases, the pair pi, sq blocks µ, a contradiction to stability of µ.

Remark 1. Theorem 2 shows that stability (with respect to the true preferences

and priorities) is the characterizing feature of the Nash equilibrium outcomes of FC

mechanisms. This generalizes Fact 1 from BM to all FC mechanisms. Ergin and Sönmez

(2006) also showed that all monotonic rank-priority mechanisms have this property.

Relatedly, within the class of rank-priority mechanisms, Jaramillo, Kayi and Klijn (2016)

characterized those that Nash implement the set of stable matchings. Our Theorem 2 is

independent of both of these results because the set of FC mechanisms is neither a subset
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nor a superset of the rank-priority mechanisms (see Appendix D). An interesting subject

for future research would be a characterization of all direct-revelation mechanisms that

Nash implement the set of stable matchings that unifies these results.

DA is known to implement the student-optimal stable matchings in weakly-dominant

strategies.21 In contrast, by Theorem 2, FC mechanisms implement all stable matchings

in Nash equilibrium, not just the student-optimal ones. Thus, DA produces (weakly)

Pareto dominant matchings, and it does so subject to a more robust solution concept.

This provides a partial answer to our main research question whether FC mechanisms

actually achieve the desiderata FCM and FCS with respect to the true preferences: They

achieve FCS because they lead to stable matchings (in equilibrium when all students

strategize), but they fail to achieve FCM (which is incompatible with stability).

6. Equilibrium under FC Mechanisms When Some

Students are Sincere

In practice, students exhibit varying levels of strategic sophistication. Some students

may report their preferences truthfully, e.g., because they lack the information that is

necessary to determine beneficial misreports. Following Pathak and Sönmez (2008),

we consider mixed problems with two groups of students: Sincere students simply

report their preferences truthfully, independent of incentives, while sophisticated students

recognize the strategic nature of the preference revelation game and play best responses.

In this section, we identify the Nash equilibrium outcomes of FC mechanisms (Section

6.1) and study the implications of strategic reporting on student welfare (Section 6.2).

6.1. Identification of Equilibrium Outcomes

We first extend our definition of Nash equilibrium to mixed problems with both sophisti-

cated and sincere students.

Definition 6. Given a problem pP,ąq, a set of sophisticated students A Ď I, and a

mechanism ϕ, a preference profile P ˚ is an A-Nash equilibrium (of ϕ at pP,ąq) if P ˚i “ Pi

21A stable matching is student-optimal if all students prefer it to any other stable matching. These
matchings are unique for the problems we consider (Roth, 1982).
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for all sincere students i P IzA and ϕipP
˚,ąq Ri ϕippP

1
i , P

˚
´iq,ąq for all sophisticated

students i P A and all preference orders P 1i .

In words, in an A-Nash equilibrium, all sincere students report truthfully and no

sophisticated student can benefit by unilaterally deviating from the equilibrium profile.

Pathak and Sönmez (2008) showed that the A-Nash equilibrium outcomes of BM

correspond to the matchings that are stable with respect to the true preferences and an

augmented priority profile. These augmented priorities capture three intuitive aspects of

BM: First, students who have been accepted keep their seats, even if they have lower

priority than another student who applies in a later round of BM. The fact that a

student ranks a school higher thus overrules the fact that her priority at that school may

be lower. Augmented priorities capture this by giving higher priority to students who

rank a school higher. Second, while sincere students report their preferences truthfully,

sophisticated students can misreport their preferences. In particular, they can rank

any school first. Augmented priorities reflect this advantage by treating sophisticated

students as if they ranked every school first. Third, BM breaks ties according to the

original priority profile, and augmented priorities do the same. The next definition

formalizes these aspects (where Isk denotes the set of students who rank s in kth position

according to P ).

Definition 7. Given a problem pP,ąq and a set of sophisticated students A Ď I, for

each school s P S, the augmented priority order pąs is constructed as follows:

• i pąs j if i P AY Is1 and j P Is2zA

• i pąs j if i P IskzA and j P Isk`1zA for any k ě 2

• i pąs j if i ąs j and either i, j P AY Is1 or i, j P IskzA for any k ě 2

• All undefined priorities are implied by transitivity

A matching µ is augmented stable if it is stable with respect to the problem pP, pąq.

With the notions of A-Nash equilibrium and augmented stability, we can now formally

restate the main result of Pathak and Sönmez (2008).

Fact 2 (Proposition 1 of Pathak and Sönmez (2008)). Given a problem pP,ąq and a set

of sophisticated students A Ď I, a matching µ is augmented stable if and only if there

exists an A-Nash equilibrium P ˚ of BM at pP,ąq with µ “ BMpP ˚,ąq.
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In words, Fact 2 means that the set of A-Nash equilibrium outcomes of BM corresponds

precisely to the set of augmented-stable matchings. Our next result extends this

characterization to the entire class of FC mechanisms, albeit with one limitation: We

identify the equilibrium outcomes of FC mechanisms only up to equivalence from the

perspective of the sophisticated students. Formally, we say that two matchings µ and ν

are A-equivalent if µi = νi for all sophisticated students i P A, denoted µ “A ν.

Theorem 3. Given a problem pP,ąq, a set of sophisticated students A Ď I, and an FC

mechanism ϕ, a matching µ is A-equivalent to some augmented-stable matching if and

only if there exists an A-Nash equilibrium P ˚ of ϕ at pP,ąq with µ “A ϕpP
˚,ąq.

A formal proof is given in Appendix E. In words, Theorem 3 shows that augmented

stability describes the equilibrium outcomes of FC mechanisms in mixed problems from

the perspective of the sophisticated students. To see why the limitation to sophisticated

students is needed, recall that FC mechanisms are restricted in how they handle first

choices but they are free in how they to handle other choices (Lemma 1). In equilibrium,

this freedom only affects the matching of sincere students because sophisticated students

can always get matched to their equilibrium school by ranking it first (Lemma 2).

If all students are sincere, then the equilibrium outcomes of FC mechanisms trivially

satisfy FCM and FCS with respect to the true preferences. With sophisticated students,

this may no longer be true. Example 2 illustrates that FCM can be violated even if there

is just one sophisticated student.

Example 2. There are three students I “ t1, 2, 3u and two schools S “ ta, bu with

one seat each, and only student 2 is sophisticated (i.e., A “ t2u). The preferences and

priorities are

Pi for i P t1, 2u : a Pi b Pi H,

P3 : b P3 a P3 H,

ąa: 3 ąa 1 ąa 2,

ąb: 1 ąb 2 ąb 3.

Notice that at most two students can be matched to their true first choices. But with

A “ t2u, the unique augmented-stable matching is µ with µ1 “ a, µ2 “ b, and µ3 “ H.
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By Thm. 3, student 2 is matched to school b in any t2u-Nash equilibrium outcome of

any FC mechanism. Thus, at most one student is matched to her true first choice which

violates FCM with respect to the true preference.

While FC mechanisms can fail to match a maximal number of students to their true

first choices in equilibrium, the next corollary shows that all equilibrium outcomes are

FCS with respect to the true preferences.

Corollary 1. Given a problem pP,ąq, a set of sophisticated students A Ď I, and an

FC mechanism ϕ, let P ˚ be an A-Nash equilibrium of ϕ at pP,ąq. Then the matching

ϕpP ˚,ąq is FCS with respect to pP,ąq.

Proof. Assume towards contradiction that ϕpP ˚,ąq is not FCS with respect to the true

problem pP,ąq. Then there exists a pair pi, sq P I ˆ pS Y tHuq that blocks ϕpP ˚,ąq

with s “ choicePi
p1q. If i P A, then i could get matched to s by ranking it first, a

contradiction to the assumption that P ˚ is an A-Nash equilibrium. If i R A, then i

already ranks s first. However, first choices are matched respecting priorities under any

FC mechanism (by Lemma 1). Thus, all students matched to s have priority over i at s,

again a contradiction.

In summary, we have found that the equilibrium outcomes of FC mechanisms in mixed

problems always satisfy FCS with respect to the true preferences, but they may violate

FCM with respect to the true preferences.

6.2. Student Welfare in Equilibrium

So far, we have analyzed student welfare under FC mechanisms in two extreme cases:

When all students are sophisticated, then FC mechanisms match at most as many

students to their true first choices in equilibrium as DA;22 when all students are sincere,

then FC mechanisms are trivially FCM. But what happens in intermediate cases, when

some but not all students are sincere?

Towards this question, we consider specific equilibrium outcomes that are unanimously

preferred by all sophisticated students. To make this formal, fix an FC mechanism ϕ, a set

of sophisticated students A Ď I, and a problem pP,ąq. By the theory of stable matchings

22Assuming truthful reporting, which is a weakly dominant strategy under DA.
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(Roth and Sotomayor, 1990), there exists a student-optimal augmented-stable matching,

say pµ. By Theorem 3, there exists an A-Nash equilibrium P ˚ (of ϕ at pP,ąq) such

that the outcome ϕpP ˚,ąq is A-equivalent to pµ, and all sophisticated students (weakly)

prefer the matching ϕpP ˚,ąq to all other A-Nash equilibrium matchings. Because of

this unanimous preference by the sophisticated students for ϕpP ˚,ąq, we now focus on

these A-optimal Nash equilibrium matchings.

For our analysis of student welfare in intermediate cases (i.e., with some sincere

students), we identify how an individual student’s behavior impacts student welfare by

comparing the respective A-optimal Nash equilibrium matchings. Before we formalize

the comparison, we discuss an example to build intuition.

Example 3. There are six students I “ t1, . . . , 6u and four schools S “ ta, b, c, du with

one seat each. The preferences and priorities are

Pi for i P t1, 2, 3u : a Pi b Pi c Pi H,

P4 : a P4 b P4 c P4 d P4 H,

P5 : a P5 b P5 d P5 H,

P6 : b P6 c P6 H,

ąs for s P S : 1 ąs . . . ąs 6.

Suppose that the FC mechanism ABM is used to match students to schools. For the

sets of sophisticated students A “ t6u and A1 “ t3, 6u, the equilibrium outcomes in each

case are unique and given in the following table.

Sophisticated students Unique equilibrium matchings under ABM

A “ t6u µ1 “ a, µ2 “ c, µ3 “ H, µ4 “ H, µ5 “ d, µ6 “ b

A1 “ t3, 6u ν1 “ a, ν2 “ H, ν3 “ b, ν4 “ d, ν5 “ H, ν6 “ c

This example illustrates four aspects of the relationship between µ and ν.

1. The sophisticated student 6 prefers the outcome when student 3 is sincere because

she strictly prefers µ6 “ b to ν6 “ c.

2. Student 3, who is either sophisticated or sincere, prefers the outcome when she is

sophisticated because she strictly prefers ν3 “ b to µ3 “ H.
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3. Whether student 3 is sophisticated or sincere has ambiguous effects for the sincere

students: Students 2 and 5 prefer µ, student 4 prefers ν, and student 1 is indifferent

between both matchings.

4. When more students are sincere, more student are matched to their true first

choices: If students 3 and 6 are both sophisticated, then only student 1 is matched

to her true first choice. However, if only student 6 is sophisticated, then students

1 and 6 are both matched to their true first choices.

The following theorem establishes that our observations about the relationship between

µ and ν in Example 3 hold in general for all FC mechanisms and all mixed problems.

Theorem 4. Given a problem pP,ąq, an FC mechanism ϕ, sophisticated students A Ď I,

and a sincere student i1 R A, let µ be an A-optimal Nash equilibrium matching and let ν

be an A1-optimal Nash equilibrium matching where A1 “ AY ti1u. Then:

1. For all i P A: µi Ri νi, i.e., all sophisticated students prefer µ to ν.

2. For i1: νi1 Ri1 µi1, i.e., i
1 prefers ν to µ.

3. For i R A Y ti1u: νi Pi µi, µi Pi νi, or νi “ µi are all possible, i.e., for all sincere

students except i1 the impact of the behaior of i1 is ambiguous.

4. For all i P I: If νi “ choicePi
p1q, then µi “ νi, i.e., any student who is matched to

her true first choice under ν is also matched to her true first choice under µ.

A formal proof is given in Appendix F. Our result generalizes the corresponding

Proposition 4 of Pathak and Sönmez (2008) in two ways: On the one hand, we extend

its scope from BM to all FC mechanisms. On the other hand, beyond the impact for

sophisticated students and i1, we also identify the impact for sincere students and for

those students who are matched to their true first choices.

Remark 2. It is intuitive that strategizing improves the outcome for i1 and harms

the other sophisticated students. Thus, Statements 1 and 2 in Theorem 4 may appear

trivial. However, this intuition is deceptive: By misreporting her preferences, i1 changes

the outcome for herself and others. But more importantly, she also changes the game

for the other sophisticated students. They in turn respond by changing their own

preference reports, which could deteriorate the outcome for i1 in general. Showing that
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FC mechanisms do not induce such dynamics is precisely the contribution of Theorem 4,

and the proof critically relies on the two properties FCM and FCS.

For market designers, Theorem 4 answers the question whether FC mechanisms can

bring us closer to achieving first-choice maximality with respect to the true preferences.

In the respective optimal equilibrium outcomes, the number of students who are matched

to their true first choices is lowest if all students are sophisticated, increases when more

students are sincere, and peaks when all students are sincere. This provides a potential

justification for the use of FC mechanisms in practice: If administrators wish to match

many students to their true first choices, if they care about a minimal fairness guarantee

in terms of FCS, and if they expect some share of the students to report their preferences

truthfully, then FC mechanisms may be an attractive design alternative.

Remark 3. This insight comes with a caveat: Nash equilibrium is a weaker solution

concept than dominant-strategy equilibrium. Moreover, robust predictions of equilib-

rium play are not the only reason for the appeal of strategyproofness. By simplifying

participation for students, strategyproofness also alleviates the cognitive cost that so-

phisticated students incur when they strategize (Azevedo and Budish, 2015). On top of

that, strategyproofness yields another form of fairness because it levels the playing field

between students with different levels of strategic sophistication (Pathak and Sönmez,

2008). Our finding that the use of non-strategyproof FC mechanisms may be justified

by the fact that they may match more students to their true first choices is agnostic to

this broader role of strategyproofness as a desideratum for market design.

7. A Characterization of the Boston Mechanism

In Theorems 1 and 2, we have shown that any FC mechanism has the same level of

vulnerability to manipulation and the same set of Nash equilibrium outcomes. Moreover,

in Lemma 1 we have shown that any FC mechanism assigns the same set of students

to their first choices in any problem. These results imply that no FC mechanism

performs better than any other FC mechanism regarding vulnerability to manipulation

and regarding the structure of the Nash equilibrium outcomes. In this section, we go

one step further and provide a characterization of the most widely used FC mechanism:
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BM. Here, we relax our restriction on the school quotas and we allow qs “ 0 for some

school s P S.

We first provide the new relaxed notions that we will use in our characterization.

Given a problem pI, S, q, P,ąq, choice k is the best possible choice for a student if there

does not exist a matching µ in which the student is assigned to her k̄’th choice where

k̄ ă k. When qs ą 0 for all s P S, the best possible choice is the first choice. However,

when qs “ 0 for some school s and school s is the top choice of all students, then the

best possible choice is the first choice.

Next, we provide more generalized versions of first-choice-maximality and first-choice-

stability. We say a mechanism is best-choice-maximal if it maximizes the number of

students assigned to the best possible choice in any problem pI, S, q, P,ąq. Similarly, a

mechanism is best-choice-stable if it is individually rational, non-wasteful, and it respects

each student’s priority at her best possible choice in any problem pI, S, q, P,ąq.

If we restrict our domain to the problems in which qs ą 0 for each school s P S, then

any FC mechanism is best-choice-maximal and best-choice-stable. When qs “ 0 for some

school s, then not all FC mechanisms are best-choice-maximal and best-choice-stable.

However, one can easily show, using its definition that BM is both best-choice-maximal

and best-choice-stable.

In addition to these two desiderata, we follow Kojima and Ünver (2014) and introduce

a third desideratum, consistency, to obtain our characterization result. We say that a

mechanism is consistent if, for any problem pI, S, q, P,ąq, when we remove a subset of

students with their assignments and update the remaining seats of the schools, then the

remaining students are assigned to the same schools as in the initial problem. Kojima

and Ünver (2014) have shown that BM is consistent.

We are now ready to provide our characterization.

Theorem 5. BM is the unique best-choice-stable, best-choice-maximal, and consistent

mechanism.

Proof. Best-choice-stability and best-choice-maximality of BM follow from its definition.

Moreover, BM is consistent (Kojima and Ünver, 2014).

On the contrary, suppose Ψ is best-choice-stable, best-choice-maximal, and consistent,

but ΨpI, S, P,ą, qq ‰ BMpI, S, q, P,ąq for some problem pI, S, q, P,ąq. The steps of

Lemma 1 imply that any best-choice-maximal and best-choice-stable mechanism assigns
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the same set of students to their best possible choices for any problem. In particular, if

choice k ą 1 is the best possible choice under problem pI, S, q, P,ąq, then we can update

the preferences of all students in I by truncating the first k´1 choices and apply Lemma

1 to show that any best-choice-maximal and best-choice-stable mechanism assigns the

same set of students to their k’th choices in problem pI, S, q, P,ąq. If we remove these

students with their assignments and update the number of remaining seats in each

school and get the set of students I 1 and quota profile q1, then by consistency of Ψ and

BM, both of these mechanisms assign the remaining students to the same schools under

both pI, S, q, P,ąq and pI 1, S, q1, P,ąq. Then, by using best-choice-maximality and best-

choice-stability of both mechanisms, we can show that in problem pI 1, S, q1, P,ąq, BM

and Ψ assign the same set of students to their best possible choice. As we follow the same

procedure, we can show that ΨpI, S, q, P,ąq “ BMpI, S, q, P,ąq, a contradiction.

8. Conclusion

In school choice, FC mechanisms arise naturally, and many school choice mechanisms

used in practice belong to this class. Understanding this class is therefore important for

researchers and practitioners alike. The class of FC mechanisms is fairly large because FC

mechanisms are only restricted in how they handle (reported) first choices. Nonetheless,

we were able to analyze the incentives and equilibria of all mechanisms in this class

(including BM, ABM, and ACPMs with e0 “ 1) purely based on the defining properties

FCM and FCS. This suggests FCM and FCS as useful concepts for the analysis of school

choice markets.

Our findings contribute to an ongoing debate about the respective merits and short-

comings of BM and DA. On the one hand, DA has the obvious advantage of being

strategyproof (Abdulkadiroğlu and Sönmez, 2003), and its outcomes weakly Pareto

dominate the Nash equilibrium outcomes of BM in settings with strict priorities and

when all students strategize optimally (Ergin and Sönmez, 2006). However, the com-

parison becomes less clear when either of the assumptions are relaxed. When priorities

are weak, the equilibrium outcomes of BM can dominate those of DA from an ex-ante

perspective (Miralles, 2008; Erdil and Ergin, 2008; Abdulkadiroğlu, Che and Yasuda,

2011). Furthermore, if all students are sincere, BM rank dominates DA whenever they

are comparable by rank dominance (Harless, 2015; Mennle and Seuken, 2017b), and BM

27



satisfies the welfare property of favoring higher ranks (Kojima and Ünver, 2014). Our

present paper adds to these insights: If first choices matter and if a share of the students

is expected to be sincere, then any FC mechanism (including BM) may yield more

appealing matchings in equilibrium than DA. Our characterization result further shows

that BM takes an elevated position among the FC mechanisms. Nevertheless, we refrain

from recommending any specific mechanism in general; instead, our findings highlight

the implicit trade-offs one must make when choosing between any of the mechanisms we

have studied.

The prevalence of non-strategyproof mechanisms in practice has inspired new ways

of thinking about incentives. For example, the concept for comparing mechanisms by

their vulnerability to manipulation, put forward by (Pathak and Sönmez, 2013), was

instrumental in identifying a trend towards better incentive properties in the USA, UK,

and Ghana. Interestingly, our results yield a criticism of this concept because it does

not identify the intuitive differences between BM and ABM. To distinguish these two

mechanisms by their incentive properties, more nuanced approaches are necessary (e.g.,

(Dur, 2015) for the case when schools find some students unacceptable or (Mennle and

Seuken, 2017b) when priorities are random).

Finally, our results give rise to promising directions for future research: Whether or

not FC mechanisms can outperform DA hinges on the share of sophisticated students

and their ability to coordinate on equilibrium. Some recent work has already considered

field data to study student behavior and outcomes in school choice markets (Calsamiglia

and Güell, 2014; de Haan et al., 2015; Dur, Hammond and Morrill, 2016). However,

further research focusing specifically on sincerity and coordination would constitute an

important contribution to the debate about school choice mechanisms, and we are aware

of ongoing efforts in this direction.

28



References
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Appendix

A. Proof of Lemma 1

Sufficiency. Since BM and ϕ are FCM, |IpϕpP,ąq, 1, P q| “ |IpBMpP,ąq, 1, P q|. Thus,

it suffices to show that for all students i P I, if i R IpBMpP,ąq, 1, P q, then i R IpϕpP,ą

q, 1, P q. Assume towards contradiction that there exists some i P I such that i R

IpBMpP,ąq, 1, P q but i P IpϕpP,ąq, 1, P q. Let s “ choicePi
p1q. Consider the first round

of BM. If i is not matched to s, there exist at least qs students whose first choice is s

and who has higher priority than i at s. If i is matched to s under ϕpP,ąq, then at least

one of these students is not matched to s under ϕpP,ąq, a contradiction to first-choice

stability of ϕ.

Necessity. IpϕpP,ąq, 1, P q “ IpBMpP,ąq, 1, P q holds for all problems pP,ąq. Since

BM is FCM, so is ϕ. Now, assume towards contradiction that ϕ is not FCM. Thus, there

exist a problem pP,ąq and a pair pi, sq P IˆpSYtHuq that blocks the matching ϕpP,ąq

and where s is i’s first choice. By assumption, the same set of students (excluding i) is

matched to s under BMpP,ąq. But then the pair pi, sq blocks the matching BMpP,ąq

as well, a contradiction to the fact that BM is FCS.

B. Proof of Lemma 2

First, assume that choicePi
p1q ‰ ϕipP,ąq for all i P A. By Lemma 1, IpϕpP,ąq, 1, P q “

IpBMpP,ąq, 1, P q. Thus, all schools to which some student in A is matched under

ϕpP,ąq are not exhausted in the first round of BM. Therefore, BMippP
1
A, P´Aq,ąq “

ϕipP,ąq for all i P A. However, IpBMppP 1A, P´Aq,ąq, 1, pP
1
A, P´Aqq “ IpϕppP 1A, P´Aq,ą

q, 1, pP 1A, P´Aqq by Lemma 1, so that ϕipP,ąq “ BMippP
1
A, P´Aq,ąq “ ϕippP

1
A, P´Aq,ąq

for all i P A.

Second, suppose that A also contains students who are matched to their first choices

under ϕpP,ąq, and let B Ď A be the set of these students. In this case, apply the

above argument to AzB. Next, observe that for any i P B, if the preference order

of i is changed to some P 1i with choiceP 1i p1q “ choicePi
p1q, then the matching of first

choices under BM does not change. In particular, i is still matched to ϕipP,ąq. Thus,

ϕipP,ąq “ BMippP
1
A, P´Aq,ąq “ ϕippP

1
A, P´Aq,ąq for all i P A.
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C. Proof of Proposition 1

Suppose that ϕpP,ąq is strictly Pareto dominated by some other matching µ at pP,ąq.

Define a mechanism ϕ to be the same as ϕ, except that ϕpP,ąq “ µ. First, observe that

ϕ must be FCM because it Pareto improves over an FCM mechanism and therefore

cannot match strictly fewer first choices. However, since ϕ is FCM, ϕ also cannot match

strictly more first choices. Thus, ϕ matches exactly the same first choices as ϕ, and

therefore, it must be FCS.

Next, we verify that ϕ is as manipulable as ϕ. Since ϕ and ϕ select the same matching

for all problems except pP,ąq, we only need to consider two cases:

Case A. pP,ąq is the true problem and some student i P I is considering some misreport

P 1i ‰ Pi,

Case B. ppP 1i , P´iq,ąq with P 1i ‰ Pi is the true problem and student i P I is considering

the particular misreport Pi.

In Case A, suppose that i can manipulate ϕ by reporting P 1i instead of reporting Pi

truthfully in the problem pP,ąq, i.e., ϕippP
1
i , P´iq,ąq Pi ϕipP,ąq. Since µ Pareto

dominates ϕpP,ąq, we get

ϕppP 1i , P´iq,ąq “ ϕippP
1
i , P´iq,ąq Pi ϕipP,ąq “ µ Ri ϕipP,ąq, (1)

or equivalently, i can also manipulate ϕ by reporting P 1i in the problem pP,ąq.

In Case B, suppose that i can manipulate ϕ by reporting Pi instead of reporting

P 1i truthfully in the problem ppP 1i , P´iq,ąq, i.e., µi “ ϕipP,ąq P
1
i ϕippP

1
i , P´iq,ąq. Let

P 2i ‰ Pi be a preference order in which µi is ranked in first position. i can obtain µi by

reporting Pi, and since ϕ is an FC mechanism, i can also obtain µi by ranking it first

(in particular by reporting P 2i ) by Lemma 2. µi “ ϕippP
2
i , P´iq,ąq “ ϕippP

2
i , P´iq,ąq

holds by construction, which implies that i can obtain µi by reporting P 2i under ϕ in

the problem pP,ąq. Thus, ϕ must be manipulable in pP,ąq.

Finally, we can construct a mechanism ψ that is FCM, FCS, and Pareto efficient by

iteratively applying the above construction. Since I, S, and q are held fixed, there are

only finitely many possible problems and matchings, so that the construction ends after

finitely many steps.
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D. FC Mechanisms and Rank-Priority Mechanisms

BM is both an FC mechanism and a monotonic rank-priority mechanism. Thus, our

Theorem 2 as well as Theorem 4 of Ergin and Sönmez (2006) and Theorem 1 of Jaramillo,

Kayi and Klijn (2016) apply to BM. To show that our result is independent of the

two other results, we construct two mechanisms: First, an FC mechanism that is not a

rank-priority mechanism, and second, a monotonic rank-priority mechanism that is not

an FC mechanism.

Example 4. ABM is an FC mechanism that is not a rank-priority mechanism. To

see this, consider four students I “ t1, 2, 3, 4u and three schools S “ ta, b, cu. The

preferences and priorities are

Pi for i P t1, 2, 3u : a Pi b Pi c Pi H,

P4 : a P4 c P4 H,

ąs for s P S : 1 ąs 2 ąs 3 ąs 4.

Observe that ABM3pP,ąq “ H and ABM4pP,ąq “ c. In the notation of Ergin and

Sönmez (2006), this implies πp2, 4q ă πp3, 3q. Next, consider the preference profile

P 1 “ pP1, P
1
2, P3q where student 2 ranks school b first under P 12. Then ABM3pP

1,ąq “ c

and ABM4pP
1,ąq “ H, which implies πp2, 4q ą πp3, 3q. It follows that no rank-priority

order is consistent with the way in which ABM matches students to schools.

Example 5. The school-proposing Boston mechanism (SPBM) is a monotonic rank-

priority mechanism that is not an FC mechanism. This mechanism works like the Boston

mechanism, but schools and students swap roles.

In the first round, each school offers a seat to the student who has highest priority at

that school. Each student then accepts the best offer she receives, unless none of the

offers come from a school that she finds acceptable; in this case, she remains unmatched.

In the kth round, each school with unfilled seats makes an offer to the student who is in

the kth position of the priority order of that school. Students who have not matched in

any previous round accept the offer from the school they prefer most, unless all offers

are unacceptable. The process ends when all students have been matched or all seats

are filled.
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SPBM violates FCM: To see this, consider two students I “ t1, 2u and two schools

S “ ta, bu with one seat each. The preferences and priorities are

P1 : a Pi b H,

P2 : b P4 a H,

ąa: 2 ąs 1,

ąb: 1 ąs 2.

The resulting matching is SPBM1pP,ąq “ b and SPBM2pP,ąq “ a. However, only the

matching µ with µ1 “ a and µ2 “ b is FCM. There exists a monotonic rank-priority

order (i.e., π with πpk, lq ď πpk1, l1q whenever pk, lq ď pk1, l1q) that is consistent with

SPBM, namely

πp1, 1q ă . . . ă πpn, 1q ă πp1, 2q ă . . . ă πpn, 2q ă πp1, 3q ă . . . ă πpn,mq. (2)

E. Proof of Theorem 3

For the fixed problem pP,ąq and sophisticated students A Ď I, let ν be an augmented-

stable matching.

Necessity. Let pP ˚A, P´Aq be an A-Nash equilibrium, for all i P A, let ϕippP
˚
A, P´Aq,ąq

be the school to which student i is matched in this equilibrium, and let P 1i be any

preference order with choiceP 1i p1q “ ϕippP
˚
A, P´Aq,ąq. Our proof uses the following two

claims:

Claim 1. pP 1A, P´Aq is an A-Nash equilibrium, and the outcomes ϕppP 1A, P´Aq,ąq and

ϕppP ˚A, P´Aq,ąq are A-equivalent.

Proof of Claim 1. Observe that ϕippP
1
A, P´Aq,ąq and ϕippP

˚
A, P´Aq,ąq are A-equivalent

by Lemma 2. Assume towards contradiction that pP 1A, P´Aq is not an A-Nash equilibrium.

Then, there exists a student i P A and a preference order P 2i such that

s “ ϕippP
2
i , P

1
Aztiu, P´Aq,ąq Pi ϕippP

1
A, P´Aq,ąq “ ϕippP

˚
A, P´Aq,ąq. (3)

By Lemma 2, we can assume choiceP 2i p1q “ s. Since pP ˚A, P´Aq is an A-Nash equilibrium,
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i cannot find a beneficial deviation (e.g., to obtain s). Thus, there exist at least qs

students who rank s first under pP ˚A, P´Aq, have higher priority than i at s, and are

therefore matched to a s under ϕppP ˚A, P´Aq,ąq. By construction, these students still

rank s first under pP 2i , P
1
Aztiu, P´Aq and thus exhaust s in the first step of ϕ. This

contradicts the assumption that i could obtain s by deviating from P 1i to P 2i .

Claim 2. DAppP 1A, P´Aq, pąq is an augmented-stable matching with respect to the true

preference profile P and A-equivalent to the outcome ϕppP ˚A, P´Aq,ąq.

Proof of Claim 2. Let ν “ DAppP 1A, P´Aq, pąq. To see A-equivalence between ν and

ϕppP ˚A, P´Aq,ąq, observe that at the problem ppP 1A, P´Aq,ąq the first round of DA and

ϕ (at ppP 1A, P´Aq, pąq) match exactly the same students to their reported first choices.

Students who enter further rounds under DA are necessarily sincere (i.e., not in A) and

only apply to schools which they have not ranked first in any subsequent rounds. By

construction of pą, they have lower priority at any school where they apply than any

student who was tentatively accepted in the first round. Thus, all students from A are

matched to the school they ranked first under P 1A. With Claim 1, this implies that the

matchings DAppP 1A, P´Aq, pąq, ϕppP 1A, P´Aq,ąq, and ϕppP ˚A, P´Aq,ąq are A-equivalent.

To see augmented stability of ν, assume towards contradiction that there exists some

student i P I and some s P S Y tHu such that s Pi νi and either s has an unfilled seat

under ν (or s “ H) or there exists another student i1 P I with s “ νi1 and i ąs i1. If

i R A is a sincere student, then she cannot be part of a blocking pair. If i P A and s

has an unfilled seat, then there are strictly less than qs students who rank s first under

pP 1A, P´Aq. Thus, s is not exhausted in the first step when ϕ is applied to ppP 1A, P´Aq,ąq.

Consequently, i can obtain s (instead of νi) by ranking s first in the A-Nash equilibrium

pP 1A, P´Aq of ϕ, a contradiction. If a student i1 with lower priority under pąs than i holds

a seat at s, i can claim this seat in the same way, again a contradiction.

In Claim 2 (using Claim 1), we have constructed the matching ν that is augmented

stable with respect to the true preference profile P and A-equivalent to ϕppP ˚A, P´Aq,ąq.

This concludes the proof of necessity.

Sufficiency. Fix an arbitrary augmented-stable matching µ, and let pP ˚A, P´Aq be a

preference profile such that choiceP˚i p1q “ µi for all i P A. Our proof uses the following

two claims:
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Claim 3. The matchings µ and ϕppP ˚A, P´Aq,ąq are A-equivalent.

Proof of Claim 3. Assume towards contradiction that there exists a student i P A such

that µi ‰ ϕippP
˚
A, P´Aq,ąq. Since i ranks µi first under P ˚i , µi must be exhausted in the

first step of ϕ by students who rank µi as their first choices and have higher priority

than i at µi under ą. Any of these qs students who is strategic (i.e., i1 P A) must be

matched to µi under the matching µ, otherwise, i1 would not rank µi first in P ˚i1 ; and if

i1 R A, then µi must be the true first choice of i1, so that i1 pąµi i by construction. Since i

is matched to µi under µ, one of these qs students, i1 say, is not matched to µi but some

other school µi1 ‰ µi. This implies i1 R A (otherwise, µi1 “ µi by the argument above).

Thus, µi is the true first choice of i1 and i1 pąµi i, so i1 and µi form a blocking pair, a

contradiction.

Claim 4. The preference profile pP ˚A, P´Aq is an A-Nash equilibrium of ϕ at pP,ąq.

Proof of Claim 4. Assume towards contradiction that there exists some student i P A

and a preference order P 1i such that s “ ϕippP
1
i , P

˚
Aztiu, P´Aq,ąq Pi ϕippP

˚
A, P´Aq,ąq “ µi.

By Lemma 2 we can assume that i ranks s first under P 1i . Thus, under the deviation,

i takes s in the first step, displacing another student or claiming an empty seat. If i

claims an empty seat, then µ is not augmented stable, a contradiction. If i displaces

another student, i1 say, then i pąs i
1. This implies that i and s block the matching µ

with respect to the augmented priorities pą, again a contradiction.

We have constructed the preference profile pP ˚A, P´Aq that is an A-Nash equilibrium

such that the matching ϕppP ˚A, P´Aq,ąq is A-equivalent to µ. This concludes the proof

of sufficiency.

F. Proof of Theorem 4

For simplicity we introduce the following notation: If all sophisticated students i P A

simultaneously prefer some matching µ to another matching ν, then we say that µ

A-dominates ν.

Proof of Statement 1. We construct a preference profile P ˚ that is an A-Nash

equilibrium and the matching ϕpP ˚,ąq weakly A-dominates ν. The statement then
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follows from the fact that the matching ϕpP ˚,ąq is weakly A-dominated by any A-

optimal Nash equilibrium matching. The preference profile P ˚ is created as follows: Let

P 0 “ pP 0
A1 , P´A1q be the preference profile where each student i P A1 ranks the school

νi first and all other students report truthfully. By Claim 1 in the proof of Theorem 3,

P 0 is also an A1-Nash equilibrium and the matching ϕpP 0,ąq is A1-equivalent to ν. Let

P 1 “ pP 0
A, Pi1 , P´A1q “ pP

0
A, P´Aq be the same preference profile expect that i1 reports

Pi1 truthfully instead of reporting P 0
i1 .

Consider the simple case where s1 “ νi1 is the true first choice of i1. Then P 1 is an

A-Nash equilibrium and ϕpP 1,ąq is A-equivalent to ν. We can simply set P ˚ “ P 1.

Next, consider the case where s1 is not the true first choice of i1. Then, if we apply

ϕ to the problem pP 1,ąq, i1 is rejected by her first choice in the first step (otherwise,

i1 could have obtained her first choice by ranking it first, which contradicts the fact

that P 0 is an A1-Nash equilibrium). Let µ1 “ ϕpP 1,ąq. Observe that µ1
i “ νi for all

i P A. We now construct preference profiles P k, k P t2, . . . , Ku in steps, where P ˚ “ PK

is constructed in the last step.

Step 0. Set k “ 1, s1 “ s1, and µ1 “ ϕpP 1,ąq.

Step 1. Let Ak be the (possibly empty) set of sophisticated students who prefer sk to

their match under µk (i.e., i P Ak if i P A and sk Pi µ
k
i ) and let Ik be the

(possibly empty) set of sincere students who rank sk as their first choice but are

not matched to it under µk (i.e., i P Ik if i R A, choicePi
p1q “ sk, and sk ‰ µki ).

Step 2. If Ak Y Ik “ H, set P ˚ “ P k; end the process.

Step 3. Else, let ik P pAk Y Ikq be the student with the highest priority at sk of those

students (i.e, ik ąsk i for all i P pAk Y Ikq, i ‰ ik).

Step 4. If ik P Ik, then set P ˚ “ P k and end the process.

Step 5. If ik P Ak, then define the new preference profile P k`1 by setting

P k`1
i “

$

’

&

’

%

P k
i , if i P Aztiku,

P k`1
i , if i “ ik,

Pi, if i P IzA,

(4)

where P k`1
ik

is a preference order under which ik ranks sk as her first choice.

Step 6. Set µk`1 “ ϕpP k`1,ąq, then set k ù k ` 1 and return to Step 1.
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The following Claim 5 completes the proof of statement 1 in Theorem 4.

Claim 5. The construction of the preference profile P ˚ as described above ends after

finitely many steps, the matching ϕpP ˚,ąq A-dominates the matching ν, and P ˚ is an

A-Nash equilibrium of ϕ at pP,ąq.

Proof of Claim 5. First, observe that for any k ě 1, each sophisticated student i P A

weakly prefers µk`1i to µki , and the student ik P A strictly prefers µk`1i to µki . This

rules out cycles. The process therefore ends after finitely many iterations and ϕpP ˚,ąq

A-dominates ν.

Finally, we need to show that P ˚ is an A-Nash equilibrium. Assume towards contradic-

tion that some student i P A has a beneficial deviation P 1i ‰ P ˚i . Let s “ ϕippP
˚
A, P´Aq,ąq

and s1 “ ϕippP
˚
Aztiu, P

1
i , P´Aq,ąq. By Lemma 2, we can assume that i ranks s1 as her

first choice under P 1i .

Suppose that i can obtain s1 because s1 is not exhausted in the first step when ϕ is

applied to P ˚. Since i P A, i weakly prefers s to νi, which implies s1 Pi νi. Thus, s1 must

have been exhausted in the first step when ϕ is applied to P 1; otherwise, P 1i would have

been a strictly beneficial deviation from the A-Nash equilibrium P 1 for i. Therefore, s1

must have become available in some step k of the transition from P 1 to P ˚. At this

point, we know that i P Ak was a candidate to claim the seat at s1, which implies that

the seat must have been taken by some student (possibly not by i but a student with

higher priority at s1 then i), a contradiction.

Conversely, suppose that i can obtain s1 because she has higher priority at s1 than some

other student ĩ who is matched to s1 under ϕpP ˚,ąq. ĩ can not be matched to s1 under

ϕpP 1,ąq, otherwise, i could have benefited by deviating from the A-Nash equilibrium

P 1. Thus, ĩ must be matched to s1 in some step of the transition. But if i has priority

over ĩ at s1, then i would have been chosen to receive s1 in this step, a contradiction.

Proof of Statement 2. Let pP ˚A, P´Aq be an A-optimal Nash equilibrium of ϕ at pP,ąq

that leads to the matching µ. First, suppose that i1 receives her first choice under µ (i.e.,

µi1 “ choicePi1
p1q). Then truthful reporting is a best response for i1 to the preference

reports pP ˚A, P´A1q from the other students. Since pP ˚A, P´Aq is an A-Nash equilibrium

and truthful reporting is a best response for i1, it must also be an A1-Nash equilibrium.

Therefore, the matching ν A1-dominates the matching µ, which implies that i1 receives

her first choice under ν as well.

39



Next, suppose that i1 does not receive her first choice under µ. Then i1 is rejected by

her first choice in the first step when ϕ is applied to the problem ppP ˚A, P´Aq,ąq. The

best school that i1 can possibly obtain is therefore the school she prefers most out of all

the schools that are not exhausted in the first step of ϕ applied to ppP ˚A, P´Aq,ąq, say s.

Now, let pą
A

and pą
A1

denote the augmented priority profiles that arise from ą when the

sets of sophisticated students are given by A and A1 “ A Y ti1u, respectively, and let

pą
A,i1„s

be the same priority profile as pą
A

except that i1 has priority at s over all sincere

students who do not rank s as their first choice. Next, we prove the two Claims 6 and 7.

Claim 6. DAipP, pą
A
q “ ϕippP

˚
A, P´Aq,ąq for all i P A and those i R A for whom

ϕippP
˚
A, P´Aq,ąq “ choicePi

p1q.

Proof of Claim 6. DApP, pą
A
q is the student-optimal augmented-stable matching with

respect to augmented priorities pą
A

. In particular, it is preferred by all sophisticated

students to any other augmented-stable matching. Thus, DApP, pą
A
q is A-equivalent to

the A-optimal Nash equilibrium outcome ϕppP ˚A, P´Aq,ąq by Theorem 3.

Now, assume towards contradiction that there exists some sincere student i R A who

receives her first choice s̃ under ϕppP ˚A, P´Aq,ąq but is rejected by s̃ under DApP, pą
A
q.

By A-equivalence of the matchings DApP, pą
A
q and ϕppP ˚A, P´Aq,ąq, the sophisticated

students who are matched to s̃ are exactly the same in both matchings. Thus, there exists

a sincere student ĩ who gets s̃ under DApP, pą
A
q but does not get s̃ under ϕppP ˚A, P´Aq,ąq.

Since i ranks s̃ first, ĩ must also rank s̃ first (otherwise, i would have pą
A

-priority over ĩ at

s̃ by construction) and ĩ must have ą-priority over i at s̃. But then both i and ĩ compete

for s̃ in the first step of ϕ, and since i gets s̃, ĩ must get s̃ as well, a contradiction.

Claim 7. DAi1pP, pą
A,i1„s

q “ s.

Proof of Claim 7. Let S̃ be the set of schools that are filled in the first step of ϕ when

it is to the problem ppP ˚A, P´Aq,ąq. By Claim 6, S̃ coincides with the set of schools that

are filled exclusively by sophisticated students and those sincere students who rank them

as their first choices under the matching DApP, pą
A
q. Recall that s is the school that i1

prefers most of all the schools that are not in S̃ and observe that i1 does not get any

of these schools, independent of her priority at s. Thus, s is the most preferred school

that i1 could possibly obtain in any matching that is stable with respect to the priority

profile pą
A,i1„s

. DApP, pą
A,i1„s

q is such a matching. Now, consider the application process
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when DA is applied to the preference profile P and the priority priority profile pą
A,i1„s

:

i1 definitely applies to s at some point because she will have been rejected by all more

preferred schools. Under pą
A,i1„s

, only strategic students and those sincere students who

rank s as their first choices have higher priority than i1 at s. Thus, i1 can only be rejected

by s if s is exhausted by such students at that point (and therefore at any later point as

well). But s R S̃, so i1 is not rejected by s.

To complete the proof of Statement 2 of Theorem 4, we observe that

νi1 “ DAi1pP, pą
A1
q Ri1 DAi1pP, pą

A,i1„s
q “ s Ri1 µi1 , (5)

where the first equality holds because the matching DApP, pą
A1
q is A1-equivalent to any

A1-optimal Nash equilibrium matching (by Theorem 3), the first preference relation holds

because DA respects improvements (Balinski and Sönmez, 1999), the second equality

holds because of Claim 7, and the last preference relation holds by definition of s.

Proof of Statement 3. This follows from Example 3.

Proof of Statement 4. Assume towards contradiction that Statement 4 is false, i.e,

there exists a student i who receives her true first choice, say s, under ν but not under

µ. Then i R A, since all sophisticated students in A prefer µ to ν by Statement 1. On

the other hand, there must exist some student ĩ who receives s under µ but not under ν

and this student must have higher priority than i at s. Since ĩ is not sophisticated, she

ranks s first and therefore applies to s in the first step of ϕ. By first-choice stability of

ϕ and the fact that i receives s in ν, ĩ must also receive s in ν, a contradiction.

G. Failure of Strong Comparison

Definition 8 (As Strongly Manipulable As-relation). ψ is as strongly manipulable as ϕ

if whenever ϕ is manipulable by some student i P I at some problem pP,ąq, then ψ is

also manipulable by the same student i at the problem pP,ąq.

Proposition 2. BM is not as strongly manipulable as ABM.

Proof. Consider a problem pP,ąq with five students I “ t1, . . . , 5u and five schools
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S “ ta, b, c, d, eu with a single seat each. Let the preference profile be given by

a P1 . . . ,

b P2 . . . ,

d P3 . . . ,

a P4 b P4 d P4 c P4 e,

a P5 b P5 c P5 d P5 e,

and let the priorities be the same at all schools such that 1 ąs . . . ąs 5 for all s P S.

Under BM and truthful reporting we have BM5pP,ąq “ c. Since a and b are taken

by students 1 and 2 in the first round and both students have priority over student 5,

student 5 cannot improve her assignment by misreporting. Under the adaptive Boston

mechanism and truthful reporting we have ABM5pP,ąq “ e. However, if student 5

ranks school c in first position (i.e., she reports c P 15 . . .), then ABM5ppP
1
5, P´5q,ąq “ c.

This represents a strict improvement for student 5. Thus, for the problem pP,ąq, ABM

is manipulable by student 5 but BM is not.

Corollary 2. BM and ABM are incomparable by the as strongly manipulable as-relation.

Proof. Proposition 2 already shows that BM is not as strongly manipulable as ABM. If

the comparison was possible, then ABM would have to be more strongly manipulable

than BM. However, a simple example shows that this is not the case: Consider a problem

pP,ąq with four students I “ t1, . . . , 4u and four schools S “ ta, b, c, du with a single

seat each. Let the preference profile be given by

a P1 . . . , (6)

b P2 . . . , (7)

a P3 b P3 c P3 d, (8)

a P4 c P4 . . . , (9)

and let the priorities be the same at all schools such that 1 ąs . . . ąs 4 for all s P S.

Under BM and truthful reporting we have BM3pP,ąq “ d, but if student 3 reports

a P 13 c P
1
3 . . . she will be assigned to c. Under the adaptive Boston mechanism and
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truthful reporting we have ABM3pP,ąq “ c. Since a and b are taken by students 1 and

2 in the first round, student 3 cannot improve her assignment by misreporting.

H. Failure of Weak Comparison for Random Priorities

H.1. Modeling Random Priorities in School Choice Mechanisms

In many school choice settings, priorities are not strict but coarse. This means that when

two students apply for the same seat at some school, then ties between these students

must be broken. Normally, this is done using a random tie-breaker. A random assignment

of the students to the schools is represented by an nˆm-matrix x “ pxi,sqiPI,sPS where

xi,s P r0, 1s denotes the probability that student i is assigned to school s. From the

perspective of the students, reporting a different preference order leads to a different

random assignment. Therefore, we need to extend their preferences, which we do by

endowing them with vNM utility functions. Given a preference order Pi, a utility function

ui : S Ñ R` is consistent with Pi if uipsq ą uips
1q whenever s Pi s

1, and we denote by

UPi
the set of all vNM utility functions that are consistent with Pi. We assume that

students wish to maximize their expected utility.

To model the uncertainty from random tie-breaking, we assume that any mechanism

first collects the preference orders of the students and then chooses a priority profile

randomly from a distribution P over priority profiles. We denote the resulting mechanism

by ϕP, where ϕPi pP q denotes the random assignment vector to student i if the reported

preference profile is P . This is the ith row of the random assignment matrix. In particular,

we denote by U the uniform distribution over all single priority profiles, that is the

priority profiles ą“ pą1, . . . ,ą1q where the priority order ąs is the same at all schools.

To study mechanisms in the presence of random priorities we consider random problems

u, which simply consist of a profile of utility functions. Note that this problem contains

no priority profile because determining this profile is now part of the mechanism. We

consider ordinal mechanisms, which depend only on the ordinal preference profile induced

by the utility profile u. This means that for two different utility profiles u, u1 that are

both consistent with the same preference profile P , any mechanism ϕP has to select

the same random assignment. Thus, it is without loss of generality that we consider

mechanisms as functions of preference profiles (rather than utility profiles).
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H.2. Comparing Random Mechanisms by Their Vulnerability to

Manipulation

Since we have changed the structure of the problem to accommodate random mechanisms,

we also need to re-define the concepts for the comparison of mechanisms by their

vulnerability to manipulation. Let P be a priority distribution and let ϕP and ψP be

two random mechanisms.

Definition 9. ψP is manipulable by student i at problem u if there exists a preference

order P 1i ‰ Pi such that EψPi pP 1i ,P´iq
ruis ą EψPi pP q ruis. ψP is manipulable at u if it

is manipulable by some student i P I at the problem u. ψP is manipulable if it is

manipulable at some problem.

Definition 10. ψP is as manipulable as ϕP if whenever ϕP is manipulable at some

problem u, then ψP is also manipulable at the same problem u. ψP is as strongly

manipulable as ϕP if whenever ϕP is manipulable by some student i at some problem u,

then ψP is also manipulable by i at u.

H.3. Failure of the Comparison of BM and ABM

Proposition 3. BMU is not as manipulable as ABMU, and ABMU is not as manipulable

as BMU.

Proof. We construct a problem up1q for which BMU is manipulable but ABMU is not,

and we construct a second problem up2q for which ABMU is manipulable but BMU is

not.

(1) Consider a problem up1q with four students I “ t1, . . . , 4u and four schools S “

ta, b, c, du with a single seat each. Let the preference profile be given by

a P
p1q
1 b P

p1q
1 c P

p1q
1 d,

a P
p1q
2 c P

p1q
2 b P

p1q
2 d,

a P
p1q
3 c P

p1q
3 b P

p1q
3 d,

b P
p1q
4 . . . .
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Student 1’s assignment vector under BMU is BMU
1 pP

p1qq “ p1{3, 0, 0, 2{3q for

a, b, c, d, respectively. If student 1 swaps b and c in her report (i.e., she reports

a P 11 c P
1
1 b P

1
1 d), her assignment vector changes to BMU

1 pP
1
1, P

p1q
´1 q “ p1{3, 0, 1{3, 1{3q.

Since BMU
1 pP

1
1, P

p1q
´1 q first order-stochastically dominates BMU

1 pP
p1qq at P

p1q
1 , this

misreport is an unambiguous improvement for student 1 (independent of her vNM

utility function u
p1q
1 ).

For settings with four students and four schools with a single seat each, ABMU is

1{3-partially strategyproof (Mennle and Seuken, 2017a). Thus, if all students have

utilities p9, 3, 1, 0q for their first, second, third, and last choices, respectively, truthful

reporting is a dominant strategy for all of them. With the utility profile up1q defined

in this way BMU is manipulable (by student 1) at the problem up1q but ABMU is

not manipulable (by any student).

(2) Consider a problem up2q with six students I “ t1, . . . , 6u and six schools S “

ta, b, c, d, e, fu with a single seat each. Let the preference profile be given by

a P
p2q
1 e P

p2q
1 c P

p2q
1 d P

p2q
1 f P

p2q
1 b, (10)

a P
p2q
2 e P

p2q
2 c P

p2q
2 d P

p2q
2 f P

p2q
2 b, (11)

a P
p2q
3 e P

p2q
3 d P

p2q
3 c P

p2q
3 f P

p2q
3 b, (12)

a P
p2q
4 e P

p2q
4 d P

p2q
4 c P

p2q
4 f P

p2q
4 b, (13)

b P
p2q
5 c P

p2q
5 . . . , (14)

b P
p2q
6 d P

p2q
6 . . . . (15)

Suppose that all students have utilities p120, 30, 19, 2, 1, 0q for their first through

sixth choices, respectively.

First, we study the incentives to manipulate under BMU. Note that student 1 cannot

improve her expected utility by ranking another school than a first. To see this,

observe the following: under truthful reporting she obtains a with probability 1{4

but if she ranks a different school first she will at best obtain her second choice e

with certainty. Since b is exhausted in the first round, she will not obtain b with

any positive probability unless she ranks it first. Therefore, it is a weakly better

response to rank b last. Since f is the worst school which she obtains with positive

probability, it is a weakly better response to leave f in fifth position. Otherwise,
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she will only reduce her chances at more preferred schools. Thus, without loss of

generality, any beneficial misreport only involves the order of the schools e, c, d. It

is a simple exercise to compute the changes in expected utility for student 1 under

any such misreport:

Report P 11 Change in expected utility

a P 11 e P
1
1 d P

1
1 c P

1
1 f P

1
1 b -2.1

a P 11 c P
1
1 e P

1
1 d P

1
1 f P

1
1 b -0.4

a P 11 c P
1
1 d P

1
1 e P

1
1 f P

1
1 b -0.3

a P 11 d P
1
1 e P

1
1 c P

1
1 f P

1
1 b -9.5

a P 11 d P
1
1 c P

1
1 e P

1
1 f P

1
1 b -8.1

This shows that truthful reporting is a best response for student 1. The same is true

for student 2, 3, and 4 by symmetry. Student 5 receives her first and second choices

with probabilities 1{2 each. Thus, the only way she can improve her expected utility

is by increasing her probability for her first choice but this is obviously impossible.

The same is true for student 6 by symmetry. In combination this means that for

the problem up2q the mechanism BMU is not manipulable.

Second, we study the incentives to manipulate under ABMU for the same prob-

lem: under truthful reporting, student 1’s assignment vector is ABMU
1 pP

p2qq “

p1{4, 1{4, 1{8, 1{8, 1{4, 0q for the schools a, e, c, d, f, b, respectively. If student 1 re-

ported P 11 with a P 11 c P
1
1 d P

1
1 e P

1
1 f P

1
1 b instead, her assignment vector would be

ABMU
1 pP

1
1, P

p2q
´1 q “ p1{4, 0, 71{120, 3{40, 1{12, 0q. This means an increase in expected

utility from 40.375 to 41.475, a strict improvement.

This concludes the proof.
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