Network Analysis With R and igraph

R Tutorial: Vectors

- Vectors can be constructed by combining their elements with the important R function c().
- v1 <- c(1, 5, 11, 33) # Numeric vector, length 4</p>
- v2 <- c("hello", "world") # Character vector, length 2 (a vector of strings)
- v3 <- c(TRUE, TRUE, FALSE) # Logical vector, same as c(T, T, F)</p>

R Tutorial: Matrix and Array

- A matrix is a vector with dimensions:
 - \square m <- rep(1, 20) # A vector of 20 elements, all 1
 - \Box dim(m) <- c(5,4) # Dimensions set to 5 & 4, so m is now a 5x4 matrix
- Creating a matrix using matrix():
 - □ m <- matrix(data=1, nrow=5, ncol=4) # same matrix as above, 5x4, full of 1s
 - □ m <- matrix(1,5,4) # same matrix as above
 - □ dim(m) # What are the dimensions of m?
- Creating a matrix by combining vectors:
 - \square m <- cbind(1:5, 5:1, 5:9) # Bind 3 vectors as columns, 5x3 matrix
 - \square m <- rbind(1:5, 5:1, 5:9) # Bind 3 vectors as rows, 3x5 matrix

Create networks

- library(igraph) # load a package
- detach(package:igraph) # detach a package
- The code below generates an undirected graph with three edges.

□ The numbers are interpreted as vertex IDs, so the edges are 1–>2, 2–>3, 3–>1.

□ g1 <- graph(edges=c(1,2, 2,3, 3, 1), n=3, directed=F) .

plot(g1) # A simple plot of the network - we'll talk more about plots later

Igraph Object

- The description of an igraph object starts with up to four letters:
 D or U, for a directed or undirected graph.
 - □ N for a named graph (where nodes have a name attribute)
 - □ W for a weighted graph (where edges have a weight attribute)
 - □ B for a bipartite (two-mode) graph (where nodes have a type attribute)

Specific Graphs and Graph Models (1)

Empty Graph

eg <- make_empty_graph(40)</pre>

plot(eg, vertex.size=10, vertex.label=NA)

Full Graph

□ fg <- make_full_graph(40)

plot(fg, vertex.size=10, vertex.label=NA)

Tree Graph

□ tr <- make_tree(40, children = 3, mode = "undirected")

□ plot(tr, vertex.size=10, vertex.label=NA)

Simple Star Graph

- \Box st <- make_star(40)
- □ plot(st, vertex.size=10, vertex.label=NA)

Specific Graphs and Graph Models (2)

- Erdos-Renyi random graph model
 - \Box er <- sample_gnm(n=100, m=40)
 - □ plot(er, vertex.size=6, vertex.label=NA)
- Watts-Strogatz small-world model
 - □ sw <- sample_smallworld(dim=2, size=10, nei=1, p=0.1)
 - □ plot(sw, vertex.size=6, vertex.label=NA, layout=layout_in_circle)
- Barabasi-Albert preferential attachment model for scale-free graphs
 - □ ba <- sample_pa(n=100, power=1, m=1, directed=F)
 - □ plot(ba, vertex.size=6, vertex.label=NA)

Reading Network Data from Files: Edgelist (1)

nodes <- read.csv("Dataset1-Media-Example-NODES.csv", header=T, as.is=T)

Iinks <- read.csv("Dataset1-Media-Example-EDGES.csv", header=T, as.is=T)

Reading Network Data from Files: Edgelist (2)

- head(nodes)
- head(links)
- nrow(nodes);
- length(unique(nodes\$id))
- nrow(links)
- nrow(unique(links[,c("from", "to")]))

Reading Network Data from Files: Edgelist (3)

- links <- aggregate(links[,3], links[,-3], sum)</p>
- links <- links[order(links\$from, links\$to),]</p>
- colnames(links)[4] <- "weight"</p>
- rownames(links) <- NULL</p>

Reading Network Data from Files: Matrix (1)

nodes2 <- read.csv("Dataset2-Media-User-Example-NODES.csv", header=T, as.is=T)

Iinks2 <- read.csv("Dataset2-Media-User-Example-EDGES.csv", header=T, row.names=1)

Reading Network Data from Files: Matrix (2)

- links2 <- as.matrix(links2)</p>
- dim(links2)
- dim(nodes2)

References:

Some contents of the slides are adapted from:
 http://kateto.net/networks-r-igraph