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Outline

Network Topological Analysis

Network Models
— Random Networks
— Small-World Networks

— Scale-Free Networks

Ref Book: Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences)

— http://www.amazon.com/Social-Network-Analysis-Applications-
Structural/dp/0521387078



http://www.amazon.com/Social-Network-Analysis-Applications-Structural/dp/0521387078

Network Topological Analysis

Network topology is the arrangement of the various elements
(links, nodes, etc). Essentially, it is the topological structure of
a network.

How to model the topology of large-scale networks?

What are the organizing principles underlying their
topology?

How does the topology of a network affect its robustness
against errors and attacks?



Network Models
 Random graph model (Erdds & Rényi,
1959)

« Small-world model (Watts & Strogatz,
1998)

« Scale-free model (Barabasi & Alert, 1999)




Random Networks

Erdés—Rényi Random Graph model is used for generating

random networks in which links are set between nodes with

equal probabilities

— Starting with n isolated nodes and connecting each pair of nodes with
probability p

— As aresult, all nodes have similar number

of links

(i.e., average degree, <k>).




To Sum Up: Gnp

n-1\ .
1_ n-1-k
" )p( p)

Path length: O(log n)

Degree distribution:  P(k) =(

Clustering coefficient: C =p =k/n



Real (MSN) Networks vs. Gnp

Are real networks like random graphs?
= Giant connected component: ©

= Average path length: ©

= Clustering Coefficient: ®

= Degree Distribution: ®
Problems with the random networks model:

* Degreed distribution differs from that of real networks

* Giant componentin most real network does NOT
emerge through a phase transition

* No local structure — clustering coefficientis too low
Most important: Are real networks random?

* The answer is simply: NO!



Small-World Network

Based on Milgram’s (1967) famous
work, the substantive point is
that networks are structured
such that even when most of
our connections are local, any
pair of people can be connected
by a fairly small number of
relational steps.

Works on 2 parameters:
1) The Clustering Coefficient
(c) = average proportion of

closed triangles
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2) The average distance (L)
separating nodes in the

network Duncan J. Watts




Six Degrees of Kevin Bacon

Origins of a small-world idea:
The Bacon number:

“ Create a network of Hollywood actors fk@
= Connect two actors if they 1;
co-appeared in the movie '
= Bacon number: number of steps to i
Kevin Bacon ENis Presley has a Bacon number of 2.
As of Dec 2007, the highest (finite) 2
Bacon number reported is 8 A
Only approx. 12% of all actors Szome Conni
cannot be linked to Bacon sty Sop (1)

with

Kevin Bacon |




The Small-World Experiment

What is the typical shortest path

length between any two people?

= Experiment on the global friendship
network

* Can’t measure, need to probe explicitly
Small-world experiment [milgram 67]

“ Picked 300 people in Omaha, Nebraska
and Wichita, Kansas

" Ask them to get a letterto a
stock-broker in Boston by passing
it through friends

How many steps did it take?




The Small-World Experiment

Milgram’s small world experiment

64 chains completed:
(i.e., 64 letters reached the target)

" It took 6.2 steps on the
average, thus
“6 degrees of separation”

Further observations:

“ People who owned stock

had shorter paths to the stockbroker
than random people: 5.4 vs. 6.7

o I 2 3 &4 5 6 T @& 98 10 1 12
NUMBER OF INTERMEDIARIES

“ People from the Boston area have even
closer paths: 4.4



Columbia Small-World Experiment

In 2003 Dodds, Muhamad and Watts
performed the experiment using e-mail:

= 18 targets of various backgrounds

= 24,000 first steps (~1,500 per target)
" 65% dropout per step

= 384 chains completed (1.5%)



Six Degrees

Assume each human is connected to 100 other people
Then:

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people

Step 3: reach 100*100*100 = 1,000,000 people
Step 4: reach 100*100*100*100 = 100M people

In 5 steps we can reach 10 billion people
What’s wrong here?

92% of new FB friendships are to a friend-of-a-friend
[Backstom-Leskovec ‘11]




Clustering Implies Link Locality

MSN network has 7 orders of magnitude
larger clustering than the corresponding G, !
Other examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61
Electrical power grid: N = 4,941 nodes, k = 2.67
Network of neurons: N = 282 nodes, k = 14

Network hactual Nrandom  Cactual Crandom
Film actors 3.65 299 0.79 0.00027
Power Grid 18.70 12.40 | 0.080 0.005
C. elegans 2.65 2.25| 0.28 0.05

h ... Average shortest path length

C ... Average clustering coefficient

“actual” ... real network

‘random” ... random graph with same avg. degree



Small-World: How?

Could a network with high clustering be
at the same time a small world?

* How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

= Clustering implies edge “locality”
= Randomness enables “shortcuts”



Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98]
Two componentsto the model:
(1) Start with a low-dimensional regular lattice
(In our case we using a ring as a lattice)
Has high clustering coefficient

Now introduce randomness (“shortcuts”)

(2) Rewire:

Add/remove edges to create
shortcuts to join remote parts
of the lattice

For each edge with prob. p move
the other end to a random node




Small-World Network

In a highly clustered,
ordered network, a single
random connection will
create a shortcut that
lowers diameter
dramatically

Watts demonstrates that
small world properties can
occur in graphs with a
surprisingly small number
of shortcuts




REGULAR NETUJORK

The Small-World Model

SMALL WORLD HETUJORK

RANDOM HETWORK

INCREASING RANDOMNESS

High clustering
High diameter

High clustering
Low diameter

h=r-  C€=2
2k -

Low clustering
Low diameter

h

=logN C=£
logx N

Rewiring allows us to “interpolate” between
a regular lattice and a random graph



Small-World: Summary

Could a network with high clustering be at the
same time a small world?

Yes! You don’t need more than a few random links
The Watts Strogatz Model:

Provides insight on the interplay between clustering
and the small-world

Captures the structure of many realistic networks
Accounts for the high clustering of real networks



Scale-Free (SF) Networks: Barabasi—Albert (BA)
Model

« “Scale free” means there is no single
characterizing degree in the network

* Growth: ¢ { /
— starting with a small number (n,) of nodes,
at every time step, we add a new node \\\V/

with m(<=n,) links that connect the new 7\§
node tom gifferent nodes already present -
in the system |
e - N
. _ 7\l
 Preferential attachment: 7]

— When choosing the nodes to which the
new node will be connected to node i
depends on its degree k;

20



Scale-Free Networks (Cont’ d)

 The degree of scale-free
networks follows power-
law distribution with a
flat tail for large k

p(k) ~ k™

« Truncated power-law
distribution deviates at the

talil
k

21

0.12

0.1 1

0.08

= 0.06 -

0.04 -

0.02

—=— Pow er-law
Truncated
5 10 5 20 25 30

In{p(k])

-14

-10 4

-12 4

© & b~ N o
I ! ! I

——Power-law

——Truncated

0.5 1 15 2 25 3 35
In(k)




Evolution of SF Networks

 The emergence of scale-free network

IS due to

— Growth effect: new nodes are added to the

network

— Preferential attachment effect (Rich-get-
richer effect): new nodes prefer to attach to

“popular” nodes

 The emergence of truncated SF
network is caused by some constraints -
on the maximum number of links a
node can have such as (Amaral, Scala

et al. 2000)

— Aging effect: some old nodes may stop
receiving links over time

— Cost effect: as maintaining links induces
costs, nodes cannot receive an unlimited

22 number of links

Cumulative distribution
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Network Analysis: Topology Analysis

Topology Average Path Clustering Degree Distribution
Length (L) Coefficient (CC) (P(K))
Random Graph Poisson Dist.:
k) e =N P(k)~e = -

Small World Lew <L ang CC,,, >CC, 4 Similar to random

(Watts & Strogatz, 1998) graph

Scale-Free network | Lgg <L, g Power-law
Distribution:
P(k) ~ k7

<k> : Average degree

23



Empirical Results from Real-World Networks

Network Size .'!. e Vout Vin Freal Vrandl ! poi Heference
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Implications of Network Modeling

« The two new models of networks have important implications to
many applications, e.g.,

— The 19 degrees of separation on the WWW implies that on average, a user
can navigate from an arbitrary web page to another randomly selected page
within 19 clicks, even though the WWW consists of millions of pages. Even
if the web increase by 10 times in the next few years, the average path
Iengt;] iIncreases only marginally from 19 to 21! (Albert, Jeong, & Barabasi,
1999

— The small-world properties of metabolic networks in cell implies that cell
functions are modulized and localized

« The ubiquity of SF networks lead to a conjecture that complex
systems are governed by the same self-organizing principle(s).

25



Robustness Testing

« How will the topology of a
network be affected if some
nodes are removed from the
network? A

“"'-..
-~ node
Ny removal
-,

« How will random node
removal (failure) and targeted
node removal (attack
targeting hubs) affect

— S: the fraction of nodes in the
largest component

— L: the average path length of the
largest component

26



Robustness Testing (Cont.)

SF networks are more robust

F\’Iandloml

against failures than random "0 P T e T T bl
networks due to its skewed degree S (@) 708 () 1
distribution 1067 ]
! 104 ¢ .
DDDD H0.2 .
o O 0.0 e Lo
SF networks are more vulnerable 02 04 06 08 10 00 02 04 06 08 19
to attacks than random networks, . (©) . (d) |
again, due to its skewed degree ' . i laol ° |
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s . |20t g |
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