
Tropos: An Agent-Oriented Software Development

Methodology

PAOLO BRESCIANI AND ANNA PERINI {bresciani,perini}@irst.itc.it

ITC-Irst, Povo (Trento), Italy

PAOLO GIORGINI AND FAUSTO GIUNCHIGLIA {paolo.giorgini,fausto}@dit.unitn.it

Department of Information and Communication Technology, University of Trento, Italy

JOHN MYLOPOULOS jm@cs.toronto.edu

Department of Computer Science, University of Toronto, Canada

Abstract. Our goal in this paper is to introduce and motivate a methodology, called Tropos,1 for building

agent oriented software systems. Tropos is based on two key ideas. First, the notion of agent and all

related mentalistic notions (for instance goals and plans) are used in all phases of software development,

from early analysis down to the actual implementation. Second, Tropos covers also the very early phases

of requirements analysis, thus allowing for a deeper understanding of the environment where the software

must operate, and of the kind of interactions that should occur between software and human agents. The

methodology is illustrated with the help of a case study. The Tropos language for conceptual modeling is

formalized in a metamodel described with a set of UML class diagrams.

Keywords: agent-oriented software engineering, multi-agent systems, agent-oriented methodologies.

1. Introduction

Agent Oriented Programming (AOP, from now on) is most often motivated by the
need for open architectures that continuously change and evolve to accommodate
new components and meet new requirements. More and more, software must
operate on different platforms, without recompilations, and with minimal assump-
tions about its operating environment and users. It must be robust, autonomous and
proactive. Examples of applications where AOP seems most suited and which are
widely quoted in literature [31, 33] are electronic commerce, enterprise resource
planning, air-traffic control systems, personal digital assistants, and so on.
To qualify as an agent, a software or hardware system is often required to have

properties such as autonomy, social ability, reactivity, and proactivity. Other attri-
butes which are sometimes required [33] are mobility, veracity, rationality, and thee
like. The key that makes a software system possess these properties is that it is
conceived and programmed at a knowledge level [23]. Thus, in AOP, we talk of
mental states and beliefs instead of machine states, of plans and actions instead of
procedures and methods, of communication, negotiation and social ability instead of
interaction and I/O functionalities, of goals, desires, and so on. Explicit represen-
tations of such mental notions provide, at least in part, the software with the extra

Autonomous Agents and Multi-Agent Sytems, 8, 203–236, 2004

� 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

flexibility needed in order to deal with the intrinsic complexity of applications such
as those mentioned earlier. The explicit representation and manipulation of goals
and plans facilitates, for instance, a run-time adaptation of system behavior in order
to cope with unforeseen circumstances, or for a more meaningful interaction with
other human and software agents.
We are defining a software development methodology, called Tropos, which allows

us to exploit all the flexibility provided by AOP. In a nutshell, the two novel features
of Tropos are:

1. The notion of agent and related mentalistic notions are used in all software
development phases, from early requirements analysis down to the actual
implementation. Our mentalistic notions are founded on belief, desire, and
intention (BDI) agent architectures [28].

2. A crucial role is given to early requirements analysis that precedes the prescriptive
requirements specification of the system-to-be. This means that we include in our
methodology earlier phases of the software development process than those
supported by other agent or object oriented software engineering methodologies
(see Section 6 for a detailed discussion). We consider this move as crucial in order
to achieve our objectives.

The idea of focusing the activities that precede the specification of software
requirements, in order to understand how the intended system will meet organiza-
tional goals, is not new. It has been first proposed in requirements engineering, see
for instance [12, 36], and specifically in Eric Yu’s work with his i* model. This model
has been applied in various application areas, including requirements engineering
[35], business process reengineering [39], and software process modeling [38]. The i*
model offers actors, goals and actor dependencies as primitive concepts [36]. The
main motivation underlying this earlier work was to develop a richer conceptual
framework for modeling processes which involve multiple participants (both humans
and software systems). The rationale of the i* model is that by doing an earlier
analysis, one can capture not only the what or the how, but also the why a piece of
software is developed. This, in turn, supports a more refined analysis of system
dependencies and encourages a uniform treatment of the system’s functional and
non-functional requirements.
Neither Yu’s work, nor, as far as we know, any earlier work on requirements

analysis was developed with AOP in mind. The application of these ideas to AOP,
and the decision to use mentalistic notions in all phases of analysis, has important
consequences. While developing agent oriented specifications and programs, one
uses the same notions and abstractions used to describe the behavior of human or
social agents, and the processes involving them. The conceptual gap from what the
system must do and why, and what the users interacting with it must do and why, is
reduced to a minimum, thus providing (part of) the extra flexibility needed to cope
with application complexities.
Indeed, the software engineering methodologies and specification languages

developed for Object-Oriented Programming (OOP) do not support earlier phases of
requirements analysis. This means that there is no formal account or analysis of the

BRESCIANI ET AL.204

connection between the intentions of the different stakeholders (human, social or
otherwise) and the system-to-be. By using UML, for instance, the software engineer
can start with use case analysis (possibly refined with activity diagrams) and then
move to architectural design. In this phase, the engineer can do static analysis using
class diagrams, or dynamic analysis using, for instance, sequence or interaction
diagrams. The target is to reach in detail of abstraction level of the actual classes,
methods and attributes used to implement the system. However, while applying this
approach and related techniques to AOP, the software engineer misses most of the
advantages coming for the fact that in AOP one conceives of programs at the
knowledge level. UML forces the programmer to translate goals and other men-
talistic notions into software level notions, for instance classes, attributes and
methods of class diagrams. Consequently, the former notions must be reintroduced
in the programming phase. The work on AUML [9, 10] is an example of work
suffering from this kind of problem.
The objective of this paper is to introduce and motivate the Tropos methodology,

in all its phases. Consistency checking for Tropos models is discussed in [15, 16]. In
addition, [6] presents a complementary case study of the Tropos methodology.
The paper is structured as follows. Section 2 introduces the core concepts of the

Tropos methodology and provides an early glimpse of how the methodology works.
The methodology is then described in Section 3, as applied to eCulture system
example, a fragment of a web-based broker of cultural information and services
developed for the government of Trentino (Provincia Autonoma di Trento, or PAT).
The Tropos modeling language and its diagrammatic representation are introduced
first, while a more precise definition of the development process is given in Section 4.
The description of the metamodel of the specification language is given in Section 5.
A discussion of related work is presented in Section 6, while Section 7 summarizes
the results of the paper and offers directions for future work.

2. The methodology

The Tropos methodology is intended to support all analysis and design activities in
the software development process, from application domain analysis down to the
system implementation. In particular, Tropos rests on the idea of building a model of
the system-to-be and its environment, that is incrementally refined and extended,
providing a common interface to various software development activities, as well as
a basis for documentation and evolution of the software.
In the following, we introduce the five main development phases of the Tropos

methodology: Early Requirements, Late Requirements, Architectural Design, Detailed
Design and Implementation. The last four phases are well-established in the Software
Engineering literature and are supported by various methodologies and tools. The
first one (early requirements analysis) is well accepted in the Requirements Engi-
neering research community, but not widely practiced. We then define the basic
notions to be modeled during each one of these phases and the techniques that guide
model refinement. Finally, we describe the modeling activities performed during the
five phases pointing out how the modeling focus shifts with the process.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 205

2.1. Development phases

Requirements analysis represents the initial phase in many software engineering
methodologies. As with other approaches, the ultimate objective of requirement
analysis in Tropos is to provide a set of functional and non-functional requirements
for the system-to-be.
Requirements analysis in Tropos is split in two main phases: Early Requirements

and Late Requirements analysis. Both share the same conceptual and methodological
approach. Thus most of the ideas introduced for early requirements analysis are used
for late requirements as well. More precisely, during the first phase, the requirements
engineer identifies the domain stakeholders and models them as social actors, who
depend on one another for goals to be achieved, plans to be performed, and re-
sources to be furnished. By clearly defining these dependencies, it is then possible to
state the why, beside the what and how, of the system functionalities and, as a last
result, to verify how the final implementation matches initial needs. In the Late
Requirements analysis, the conceptual model is extended including a new actor,
which represents the system, and a number of dependencies with other actors of the
environment. These dependencies define all the functional and non-functional
requirements of the system-to-be.
The Architectural Design and the Detailed Design phases focus on the system

specification, according to the requirements resulting from the above phases.
Architectural Design defines the system’s global architecture in terms of sub-systems,
interconnected through data and control flows. Sub-systems are represented, in the
model, as actors and data/control interconnections are represented as dependencies.
The architectural design provides also a mapping of the system actors to a set of
software agents, each characterized by specific capabilities. The Detailed Design
phase aims at specifying agent capabilities and interactions. At this point, usually,
the implementation platform has already been chosen and this can be taken into
account in order to perform a detailed design that will map directly to the code.2

The Implementation activity follows step by step, in a natural way, the detailed
design specification on the basis of the established mapping between the imple-
mentation platform constructs and the detailed design notions.

2.2. The key concepts

Models in Tropos are acquired as instances of a conceptual metamodel resting on the
following concepts/relationships:

Actor, which models an entity that has strategic goals and intentionality within the
system or the organizational setting. An actor represents a physical, social or
software agent as well as a role or position. While we assume the classical AI
definition of software agent, that is, a software having properties such as
autonomy, social ability, reactivity, proactivity, as given, for instance in [24], in
Tropos we define a role as an abstract characterization of the behavior of a social
actor within some specialized context or domain of endeavor, and a position

BRESCIANI ET AL.206

represents a set of roles, typically played by one agent. An agent can occupy a
position, while a position is said to cover a role. A discussion on this issue can be
found in [37].

Goal, which represents actors’ strategic interests. We distinguish hard goals from
softgoals, the second having no clear-cut definition and/or criteria for deciding
whether they are satisfied or not. According to [7], this different nature of
achievement is underlined by saying that goals are satisfied while softgoals are
satisficed. Softgoals are typically used to model non-functional requirements. For
simplicity, In the rest of the paper goals refer to hard goals when there is no
danger of confusion.

Plan, which represents, at an abstract level, a way of doing something. The execution
of plan can be a means for satisfying a goal or for satisfying a softgoal.

Resource, which represents a physical or an informational entity.
Dependency, between two actors, which indicates that one actor depends, for some

reason, on the other in order to attain some goal, execute some plan, or deliver a
resource. The former actor is called the depender, while the latter is called the
dependee. The object around which the dependency centers is called dependum. In
general, by depending on another actor for a dependum, an actor is able to
achieve goals that it would otherwise be unable to achieve on its own, or not as
easily, or not as well. At the same time, the depender becomes vulnerable. If the
dependee fails to deliver the dependum, the depender would be adversely affected
in its ability to achieve its goals.

Capability, which represents the ability of an actor of defining, choosing and exe-
cuting a plan for the fulfillment of a goal, given certain world conditions and in
presence of a specific event.

Belief, which represents actor knowledge of the world.

These notions are more formally specified syntactically in the language metamodel
described in Section 5.

2.3. Modeling activities

Various activities contribute to the acquisition of a first early requirement model, to
its refinement and to its evolution into subsequent models. They are:

Actor modeling, which consists of identifying and analyzing both the actors of the
environment and the system’s actors and agents. In particular, in the early
requirement phase actor modeling focuses on modeling the application domain
stakeholders and their intentions as social actors which want to achieve goals.
During late requirement, actor modeling focuses on the definition of the system-to-
be actor, whereas in architectural design, it focuses on the structure of the system-
to-be actor specifying it in terms of sub-systems (actors), interconnected through
data and control flows. In detailed design, the system’s agents are defined speci-
fying all the notions required by the target implementation platform, and finally,
during the implementation phase actor modeling corresponds to the agent coding.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 207

Dependency modeling, which consists of identifying actors which depend on one
another for goals to be achieved, plans to be performed, and resources to be
furnished. In particular, in the early requirement phase, it focuses on modeling
goal dependencies between social actors of the organizational setting. New
dependencies are elicited and added to the model upon goal analysis performed
during the goal modeling activity discussed below. During late requirements
analysis, dependency modeling focuses on analyzing the dependencies of the
system-to-be actor. In the architectural design phase, data and control flows be-
tween sub-actors of the system-to-be actors are modeled in terms of dependencies,
providing the basis for the capability modeling that will start later in architectural
design together with the mapping of system actors to agents.

A graphical representation of the model obtained following these modeling
activities is given through actor diagrams (see Section 5 for more details), which
describe the actors (depicted as circles), their goals (depicted as ovals and cloud
shapes) and the network of dependency relationships among actors (two arrowed
lines connected by a graphical symbol varying according to the dependum: a goal, a
plan or a resource). An example is given in Figure 1.

Goal modeling rests on the analysis of an actor goals, conducted from the point of
view of the actor, by using three basic reasoning techniques: means-end analysis,
contribution analysis, and AND/OR decomposition. In particular, means-end
analysis aims at identifying plans, resources and softgoals that provide means for
achieving a goal. Contribution analysis identifies goals that can contribute posi-
tively or negatively in the fulfillment of the goal to be analyzed. In a sense, it can
be considered as an extension of means-end analysis, with goals as means. AND/
OR decomposition-combines AND and OR decompositions of a root goal into

increase
internet use

get cultural
information

Citizen

Visitor

enjoy visit

Actor

 Softgoal
dependency

depender

dependum

dependee

PAT

taxes well
spent

Hardgoal

Softgoal

Museum

provide
cultural
services

Figure 1. Actor diagram modeling the stakeholders of the eCultural project.

BRESCIANI ET AL.208

sub-goals, modeling a finer goal structure. Goal modeling is applied to early and
late requirement models in order to refine them and to elicit new dependencies.
During architectural design, it contributes to motivate the first decomposition of
the system-to-be actors into a set of sub-actors.

Plan modeling can be considered as an analysis technique complementary to goal
modeling. It rests on reasoning techniques analogous to those used in goal
modeling, namely, means-end, contribution analysis and AND/OR decomposi-
tion. In particular, AND/OR decomposition provides an AND and OR decom-
positions of a root plan into sub-plans.

A graphical representation of goal and plan modeling is given through goal dia-
grams, see, for instance, Figure 3 but also Section 5 for more details.

Capability modeling starts at the end of the architectural design when system sub-
actors have been specified in terms of their own goals and the dependencies with
other actors. In order to define, choose and execute a plan for achieving its own
goals, each system’s sub-actor has to be provided with specific ‘‘individual’’
capabilities. Additional ‘‘social’’ capabilities should be also provided for man-
aging dependencies with other actors. Goals and plans previously modeled be-
come integral part of the capabilities. In detailed design, each agent’s capability is
further specified and then coded during the implementation phase.

A graphical representation of these capabilities is given by capability and plan
diagrams. UML activity diagrams (see Figure 9 for an example) and AUML inter-
action diagrams [25] (Figure 11) are used to this purpose (more details in Section 5).

3. An example

In this section we go through and discuss the five Tropos phases via a substantial
case study. The example considered is a fragment of a real application developed
for the government of Trentino (Provincia Autonoma di Trento, or PAT). In
the exposition, the example has been suitably modified to take into account a
non-disclosure agreement and also to make it simpler and therefore more easily
understandable. The system (which we will call throughout the eCulture system) is a
web-based broker of cultural information and services for PAT, including infor-
mation obtained from museums, exhibitions, and other cultural organizations and
events [17]. It is the government’s intention that the system be usable by a variety of
users, including Trentino citizens and tourists, looking for things to do, or scholars
and students looking for material relevant to their studies.

3.1. Early requirements analysis

Early requirements analysis consists of identifying and analyzing the stakeholders and
their intentions. Stakeholders aremodeled as social actors who depend on one another

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 209

for goals to be achieved, plans to be performed, and resources to be furnished.
Intentions are modeled as goals which, through a goal-oriented analysis, are decom-
posed into finer goals, that eventually can support evaluation of alternatives.
In our eCulture example we can start by informally listing (some of) the stake-

holders:

– Provincia Autonoma di Trento (PAT), that is the government agency funding the
project; its objectives include improving public information services, increasing
tourism through new information services, also encouraging Internet use within
the province.

– Museums, that are the major cultural information providers for their respective
collections; museums want government funds to build/improve their cultural
information services, and are willing to interface their systems with other cultural
systems or services.

– Visitors, who want to access cultural information, before or during their visit to
Trentino, to make their visit interesting and/or pleasant.

– (Trentino) Citizens, who want easily accessible information, of any sort, and (of
course) good administration of public resources.

Figure 1 shows the actor diagram for the eCulture domain. In particular, Citizen is
associated with a single relevant goal: get cultural information, while Visitor has an
associated softgoal enjoy visit. Along similar lines, PAT wants to increase
internet use while Museum wants to provide cultural services. Finally, the diagram
includes one softgoal dependency where Citizen depends on PAT to fulfill the
taxes well spent softgoal.
Once the stakeholders have been identified, along with their goals and social

dependencies, the analysis proceeds in order to enrich the model with further details.
In particular, the rationale of each goal relative to the stakeholder who is responsible
for its fulfillment has to be analyzed. Basically, this is done through means-end
analysis and goal/plan decomposition. It is important to stress that what goals are
associated with each actor is a decision of the corresponding stakeholder, not the
design team.
A first example of the result of such an analysis from the perspective of Citizen and

Visitor is given by the goal diagrams depicted in Figure 2. For the actor Citizen, the
goal get cultural information is decomposed into visit cultural institutions and
visit cultural web systems. These two sub-goals can be seen as alternative ways of
fulfilling the goal get cultural information (and we will call this a ‘‘OR-decomposi-
tion’’). Goal decomposition can be closed through a means-end analysis aimed at
identifying plans, resources and softgoals that provide means for achieving the goal.
For example, the plan (depicted as a hexagon) visit eCulture System is a means to
fulfill the goal visit cultural web systems. This plan can be decomposed into sub-
plans, namely use eCultureSystem and access internet. These two sub-plans become
the reasons for a set of dependencies between Citizen and PAT: eCulture
System available, internet infrastructure available and usable eCulture System. The
analysis for Visitor is simpler: plan a visit can give a positive contribution to the goal
enjoy visit, and for this the Visitor needs the eCulture System too.

BRESCIANI ET AL.210

A second example, in Figure 3, shows portions of the goal analysis for PAT,
relative to the goals that Citizen delegates to PAT as a result of the previous analysis.
The goals increase internet use and eCulture System available are both well served
by the goal build eCulture System. Inside the actor diagram, softgoal analysis is
performed identifying the goals that contribute positively or negatively to the soft-
goal. The soft-goal taxes well spent gets positive contributions from the softgoal
good services, and, in the end, from the goal build eCulture System too.
The final result of this phase is a set of strategic dependencies among actors, built

incrementally by performing goal/plan analysis on each goal, until all goals have
been analyzed. Goals lower down in a goal hierarchy are more specific, and are
motivated by goals higher up in the hierarchy. For instance, in the example in
Figure 3, the goal build eCulture System is motivated by its two supergoals.

visit cultural
institutions

visit
eCulture
System

use
eCulture
System

access
internet

get cultural
information

Visitor
enjoy visit

plan a visit

eCulture
System
available

PAT

internet
infrastructure

available

Actor perspective
AND decomposition

+

visit cultural
web systems

usable
eCulture
Sysyem

ContributionOR decomposition

Plan

+/-

Citizen

Figure 2. Goal diagrams for Citizen and Visitor. Notice the goal and plan decomposition, the means-end

analysis and the (positive)softgoal contribution.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 211

3.2. Late requirements analysis

Late requirement analysis focuses on the system-to-be (the eCulture System in our
case) within its operating environment, along with relevant functions and qualities.
The system-to-be is represented as one actor which has a number of dependencies
with the other actors of the organization. These dependencies define the system’s
functional and non-functional requirements.
The actor diagram in Figure 4 includes the eCulture System and shows a set

of goals and softgoals that PAT delegates to it. In particular, the goal
provide eCultural services, which contributes to the main goal of PAT increase
internet use (see Figure 3), and the softgoals extensible eCulture System flexible,
eCulture System, usable eCulture System, and use internet technology. These goals
are then analyzed from the point of view of the eCulture System. In Figure 4 we
concentrate on the analysis of the goal provide eCultural services and the softgoal
usable eCulture System. The goal provide eCultural services is decomposed (AND
decomposition) into four sub-goals: make reservations, provide info educational,
services and virtual visits. As basic eCultural service, the eCulture System must
provide information (provide info), which can be logistic info, and cultural info.
Logistic info concerns, for instance, timetables and visiting instructions for museums,

increase
internet use

PAT

internet
infrastructure

available

eCulture
System
available

reasonable
expenses

good cultural
services

fundig
museums for
own systems

good
services

build
eCulture
System

offer
inexpensive
infrastructure

+

+

+

+
+

+

+

provide
eCultural
services

Means-ends analysis

educate
citizens provide

interesting
systems

taxes well
spent

Figure 3. Goal diagram for PAT.

BRESCIANI ET AL.212

while cultural info concerns the cultural content of museums and special cultural
events. This content may include descriptions and images of historical objects, the
description of an exhibition, and the history of a particular region. Virtual visits are
services that allow, for instance, Citizen to pay a virtual visit to a city of the past
(Rome during Cæsar’s time!). Educational services includes presentation of historical
and cultural material at different levels (e.g., high school or undergraduate university

PAT

provide
eCultural
services

available
eCulture
System

portable

scalable

use internet
technology

+

+

+

+

make
reservations

provide
info

educational
services

cultural infologistic info

extensible
eCulture
System

flexible
eCulture
System

user friendly
eCulture
System

virtual visits

+

temporal
availability

provide
eCultural
services

usable
eCulture
System

usable
eCulture
System

eCulture
System

Figure 4. A portion of the actor diagram including PAT and eCulture System and goal diagram of the

eCulture System.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 213

level) as well as on-line evaluation of the student’s grasp of this material.
Make reservations allows the Citizen to make reservations for particular cultural
events, such as concerts, exhibitions, and guided museum visits.
Softgoal contributions can be identified applying the same kind of analysis de-

scribed by the goal diagram of Figure 3. So for instance, the softgoal
usable eCulture System has two positive (+) contributions from softgoals
user friendly eCulture System and available eCulture System. The former contributes
positively because a system must be user friendly to be usable, whereas the latter
contributes positively because it makes the system portable, scalable, and available
over time (temporal availability).
Often, some dependencies in the actor diagram must be revised upon the intro-

duction of the system actor. We have seen in Figure 2 that for Citizen a possible sub-
plan of getting eCultural info is using an eCulture system. Now we can model this
in terms of a direct dependency between the actors Citizen and eCulture System.
Figure 5 shows how this dependency is analyzed inside the goal diagram of the
eCulture System. The goal search information (a sub-goal of the goal provide info)
can be fulfilled by four different plans: search by area (thematic area),
search by geographical area, search by keyword, and search by time period. The
decomposition into sub-plans is almost the same for all four kinds of search. For
example, the sub-plan get info on area is decomposed in find info sources, that finds
which information sources are more appropriate to provide information concerning
the specified area, and the sub-plan querysources, that queries the information
sources. The sub-plan find info sources depends on the museums for the description
of the information that the museums can provide, i.e., the resource dependency
info about source (a rectangle in Figure 5), and synthesize results depends on
museums for query result. Finally, in order to search information about a particular
thematic area, the Citizen is required to provide information using an
area specification form.
The analysis conducted so far is intended to provide a context within

which the system-to-be is to be designed. Skipping this analysis can lead to mis-
understandings about what the system should be doing or the special qualities it
should possess. Indeed, it has been well documented in the Software Engineering
literature that many software faults and failures originate in misunderstood
requirements [18].

3.3. Architectural design

The architectural design phase defines the system’s global architecture in terms of
sub-systems (actors) interconnected through data and control flows (dependencies).
This phase is articulated in three steps, as follows.

Step 1. As first step, the overall architectural organization is defined. New actors
(including sub-actors) are introduced in the system as a result of analysis performed
at different levels of abstraction, such as

BRESCIANI ET AL.214

– inclusion of new actors and delegation of sub-goals to sub-actors upon goal
analysis of system’s goals,

– inclusion of new actors according to the choice of a specific architectural style (see
[14, 21] for more details about the use of architectural patterns and styles),

– inclusion of actors contributing positively to the fulfillment of some specific
functional and non-functional requirement.

Figure 6 shows the decomposition in sub-actors of the eCulture System and the
delegation of some goals from the eCulture System to them. The eCulture System
depends on the Info Broker to provide info, on the Educational Broker to provide
educational services, on the Reservation Broker to make reservations, on Virtual
Visit Broker to provide virtual visits, and on System Manager to provide interface.
Additionally, each sub-actor can be itself decomposed in sub-actors responsible for
the fulfillment of one or more sub-goals.
The final result of this first step is an extended actor diagram, in which new actors

and their dependencies with the other actors are presented. Figure 7 shows the
extended actor diagram with respect to the Info Broker and the assigned plan
search by area. The User Interface Manager and the Sources Interface Manager are

eCulture
System

get cultural
information

search
information

search by
geographical

area

search by
area

get info on
area

clssify
area

synthesize
results

query
sources

find info
sources

area
specification

form

info about
source query result

Museum

search by
keywords

search by
time period

Citizen

Figure 5. Goal diagram for the goal get cultural information and dependencies between the actor eCulture

System and other environment’ actors.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 215

responsible for interfacing the system to the external actors Citizen and Museum.
The Services Broker and Sources Broker have been also introduced to facilitate
generic interactions outside the system. Services Broker manages a repository of
descriptions for services offered by actors within the eCulture System. Analogously,
Sources Broker manages a repository of descriptions for information sources avail-
able outside the system.
The three sub-actors: the Area Classifier, the Results Synthesizer, and the Info

Searcher (Figure 7) have been introduced upon the analysis of the plan
search by area reported in Figure 5. Area Classifier is responsible for the classification
of the information provided by the user. It depends on the User Interface Manager
for interfacing to the users, and on the Service Broker to have information about the
services provided by other actors. The Info Searcher depends on Area Classifier to
have information about the thematic area that the user is interested in, on the
Source Broker for the description of the information sources available outside
the system, and on the Sources Interface Manager for interfacing to the sources.
The Results Synthesizer depends on the Info Searcher for the information concern-
ing the query that the Info Searcher asked, and on the Museum to have the query
results.

Step 2. This step consists in the identification of the capabilities needed by the
actors to fulfill their goals and plans. Capabilities are not derived automatically but
they can be easily identified by analyzing the extended actor diagram. In particular,

provide info
educational

services
make

reservations virtual visits
provide
interface

Info
Broker Educational

Broker
Reservation

Broker
Virtual Visit

Broker
System

Manager

system
interfacing

user
interfacing

System
Interface
Manager

User
Interface
Manager

eCulture
System

Figure 6. Actor diagram for the eCulture System architecture (step 1).

BRESCIANI ET AL.216

each dependency relationship can give place to one or more capability triggered by
external events. To give an intuitive idea of this process let’s focus on a specific actor
of the extended actor diagram, such as the Area Classifier, and consider all the in-
going and out-going dependencies, as shown in Figure 8. Each dependency is
mapped to a capability. So, for instance, the dependency for the resource
area specification form calls for the capability get area specification form, and so on.
The Area Classifier’s capabilities as well as the capabilities of the other actors of the
extended actor diagram of Figure 7 are listed in Table 1.

Step 3. The last step consists of defining a set of agent types and assigning each of
them one or more different capabilities (agent assignment). Table 2 reports the
agents assignment with respect to the capabilities identified in Table 1. Of course,
many other capabilities and agent types are needed in case we consider all the goals
and plans associated with the complete extended actor diagram.
In general, the agents assignment is not unique and depends on the designer. The

number of agents and the capabilities assigned to each of them are choices driven by
the analysis of the extend actor diagram and by the way in which the designer think
the system in term of agents. Tropos offers a set of pre-defined patterns recurrent in
multi-agent literature that can help the designer [21].

Area
Classifier

Info
Searcher

Info
Broker

area
information

query
information

Results
Synthesizer

area
specification

form

area
informationCitizen

Interfacing
to the eCulture

System

interfacing
to the users

services
information

Services
Broker

services
description

Sources
Broker

sources
information

interfacing
to sources

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Figure 7. Extended actor diagram w.r.t. the Info Broker (step 1).

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 217

3.4. Detailed design

The detailed design phase deals with the specification of the agents’ micro level.
Agents’ goals, beliefs, and capabilities, as well as communication among agents are
specified in detail. Practical approaches for this activity are usually proposed within
specific development platforms and depend on the features of the adopted agent
programming language. In other words, this step is usually strictly related to
implementation choices. Moreover, the Foundation for Intelligent Physical Agents
(FIPA) is supporting the extension of the Unified Modeling Language (UML) [2] as
the language which should enable the specification of agent systems [1]. Agent UML
packages modeling well-known agent communication protocols, such as the Con-
tract Net, are already available [25].
In Tropos, we adapt existing results from these approaches to agent system design.

However, our detailed design step takes as input the specifications resulting from the
architectural design phase and the reasons for a given element, designed at this level,
can be traced back to early requirement analysis.
During detailed design, we use UML activity diagrams for representing capabil-

ities and plans, and we adopt a subset of the AUML diagrams proposed in [25] for
specifying agent protocols.

Info
Searcher

Info
Broker

query
information

area
information

Interfacing
to the eCulture

System

Services
Broker

Sources
Broker

sources
information

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Area
Classifier

area
specification

form

interfacing
to the users

area
information

Results
Synthesizer

Citizen interfacing
to sources

services
information

services
description

Figure 8. Identifying actor capabilities from actor dependencies w.r.t. the Area Classifier (step 2).

BRESCIANI ET AL.218

Capability diagrams. The UML activity diagram allows us to model a capability (or
a set of correlated capabilities) from the point of view of a specific agent. External
events set up the starting state of a capability diagram; action states model plans,
transition arcs model finishing of action states, and beliefs are modeled as objects.
For instance, Figure 9 depicts the capability diagram of the present query results
capability of the User Interface Agent.

Plan diagrams. Each plan node of a capability diagram can be further specified by
UML activity diagrams. For instance, Figure 10 depicts the plan evaluate results
corresponding to the capability depicted in Figure 9. The plan evaluate query results

Table 1. Actors’ capabilities (step 2).

Actor Name N Capability

Area Classifier 1 Get area specification form

2 Classify area

3 Provide area information

4 Provide service description

Info Searcher 5 Get area information

6 Find information source

7 Compose query

8 Query source

9 Provide query information

Provide service description

Results Synthesizer 10 Get query information

11 Get query results

12 Provide query results

13 Synthesize area query results

Provide service description

Sources Interface Manager 14 Wrap information source

Provide service description

Sources Broker 15 Get source description

16 Classify source

17 Store source description

18 Delete source description

19 Provide sources information

Provide service description

Services Broker 20 Get service description

21 Classify service

22 Store service description

23 Delete service description

24 Provide services information

User Interface Manager 25 Get user specification

26 Provide user specification

27 Get query results

28 Present query results to the user

Provide service description

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 219

is activated by the arrival of the query results from the Synthesizer, and it ends
storing an empty or non-empty result set. Query results are compared to a set of
possible result models contained in an agent’s beliefs. Possible errors during the
comparison end the plan without any side effect. If there are no errors, the plan ends
successfully storing a result set conform to the found result model. The plan can end
successfully also when there are no result models comparable to the query results. In
this case, the agent stores an empty result set.

Agent interaction diagrams. Here AUML sequence diagrams can be exploited. In
AUML sequence diagrams, agents correspond to objects, whose life-line is inde-
pendent from the specific interaction to be modeled communication acts between
agents correspond to asynchronous message arcs.
Figure 11 shows a simple part of the communicative interaction among the sys-

tem’s agents and the user. In particular, the diagram models the interaction among

Table 2. Agent types and their capabilities.

Agent Capabilities

Query Handler 1; 3; 4; 5; 7; 8; 9; 10; 11; 12

Classifier 2; 4

Searcher 6; 4

Synthesizer 13; 4

Wrapper 14; 4

Agent Resource Broker 15; 16; 17; 18; 19; 4

Directory Facilitator 20; 21; 22; 23; 24; 4

User Interface Agent 25; 26; 27; 28; 4

Query results

evaluate query
results

present empty present query
results results

empty result set result set

Figure 9. Capability diagram represented as an UML activity diagram.

BRESCIANI ET AL.220

the user (citizen), the User Interface Agent (UI), the Directory Facilitator (DF), and
the Query Handler (QH). The interaction starts with an info request by the user to the
UI, and ends with the results presentation by the UI to the user. The UI asks the user
for the query specifications, and when the user replays, the UI asks the DF for the
address of an agent able to provide the requested service. The DF sends the QH
address to the UI so that the UI can ask the QH for the service. Finally, the QH
sends the results to the UI, and then the UI presents the results to the user. The
template packages of sequence diagrams, proposed in [25] for modeling Agent
Interaction Protocols, can be straightforwardly applied to our example. In such a
case, each communicative act of Figure 11 must be analyzed in detail.

3.5. Implementation using JACK

The BDI platform chosen for the implementation is JACK Intelligent Agents [11], an
agent-oriented development environment built on top and fully integrated with Java.
Agents in JACK are autonomous software components that have explicit goals
(desires) to achieve or events to handle. Agents are programmed with a set of plans

results

read query

find result
model

found?

no

store empty
results

yes

vs. model
compare results

recoverable errors?

yes

no

Store results set

Figure 10. Plan diagram for the plan evaluate query. Ovals correspond to simple or complex actions, arcs

to transitions from an action to the subsequent one, start and end states transitions to events.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 221

in order to make them capable of achieving goals. The implementation activity
follows in a natural way the detailed design specification described in Section 3.4. In
fact, the notions introduced in that section have a direct correspondence with the
following JACK’s constructs, as explained below:

– Agent: A JACK agent is used to define the behavior of an intelligent software
agent. This includes the capabilities an agent has, the types of messages and events
it responds to and the plans it uses to achieve its goals.

– Capability: A JACK capability can include plans, events, beliefs and other
capabilities. An agent can be assigned a number of capabilities. Furthermore, a
given capability can be assigned to different agents. JACK’s capability notion
provides a means to reuse.

– Belief: The JACK database amounts to a generalized relational database that
describes a set of beliefs ascribed to an agent.

citizen: User

ui:User
Interface

df:Directory
Facilitator

qh:Query
Handler

info request

query specs. request

query spec. submission

query for service

QH agent address

query commitments

results communication

results presentation

Figure 11. Agent interaction diagram. Boxes represent agents and arrows model communicative acts.

BRESCIANI ET AL.222

– Event: Internal and external events specified in the detailed design map to JACK’s
event construct. In JACK, an event describes a triggering condition for agents
actions.

– Plan: The plans contained in a capability specification resulting from a
detailed design map to JACK plans. In JACK, a plan is a sequence of instruc-
tions the agent follows to try to achieve goals and deal with occurrences of
events.

Figure 12 depicts the JACK layout presenting the eCulture System analyzed in the
previous sections. The first window focuses on the declaration of the five agents, and
in particular on the User Interface Agent and its capabilities. The definition for the
User Interface Agent is as follows:

public agent Userlnterface extends Agent f
#has capability GetQueryResults;

#has capability ProvideUserSpecification;

#has capability GetUserSpecification;

#has capability PresentQueryResults;

#handles event InformQueryResults;

#handles event ResultsSet; g

The second window lists all the capabilities associated with the agents of the sys-
tem. The capability present query results analyzed in Figure 9, is defined as
follows:

Figure 12. JACK Developing Environment for the eCulture project.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 223

public capability PresentQueryResults extends Capability f
#handles external event InformQueryResults;

#posts event ResultsSet;

#posts event EmptyResultsSet;

#private database QueryResults ();

#private database ResultsModel ();

#uses plan EvaluateQueryResults;

#uses plan PresentEmptyResults;

#uses plan PresentResults; g

The last window presents the plans associated with the capability pre-
sent query results. The plan evaluate query results, analyzed in detail in the previous
section (i.e., the plan evaluate query described in the plan diagram of Figure 10), is
defined as follows:

public plan EvaluateQueryResults extends Plan f
#handles event InformQueryResults ev;

static boolean relevant (InformQueryResults ev) freturn trueg
static model md;

static queryResults qr;

body ()

f if (readQueryResults (qr))

f if (findResultModel (qr,md))

f if(compareResultModel(md)) fstoreResults(qr,md)}}
else storeEmptyResults();

g
else f System.err(1); g g g

4. The development process

The previous sections introduced the primitive concepts supported by Tropos and
the different kinds of modeling activities one performs during a Tropos-based
software development project. In this section, we focus on the generic design process
through which these models are constructed [19]. The process is basically one of
analyzing goals on behalf of different actors, and is described in terms of a non
deterministic concurrent algorithm, including a completeness criterion. Note that
this process is carried out by software engineers (rather than software agents) at
design-time (rather than run-time). We present in this section only the algorithms for
early and late requirements analysis.
Intuitively, the process begins with a number of actors, each with a list of associated

root goals (possibly including softgoals). Each root goal is analyzed from the per-
spective of its respective actor, and as sub-goals are generated, they are delegated to
other actors, or the actor takes on the responsibility of dealing with them him/her/
itself. This analysis is carried out concurrently with respect to each root goal.
Sometimes the process requires the introduction of new actors which are delegated

BRESCIANI ET AL.224

goals and/or tasks. The process is complete when all goals have been dealt with to the
satisfaction of the actors who want them (or the designers thereof.)
Assume that actorList includes a finite set of actors, also that the list of goals for

actor is stored in goalList(actor). In addition, we assume that agenda(actor) includes
the list of goals actor has undertaken to achieve personally (with no help from other
actors), along with the plan that has been selected for each goal. Initially,
agenda(actor) is empty. DependencyList includes a list of dependencies among actors,
while capabilityList(actor) includes hgoal; plani pairs indicating the means by which
the actor can achieve particular goals. Finally, goalGraph stores a representation of
the goal graph that has been generated so far by the design process. Initially,
goal Graph contains all root goals of all initial actors with no links among them. We
will treat all of the above as global variables which are accessed and/or updated by
the procedures presented below. For each procedure, we use as parameters those
variables used within the procedure.

global actorList, goalList, agenda, dependencyList,

capabilityList, goalGraph;
procedure rootGoalAnalysis(actorList, goalList, goalGraph)

begin

rootGoalList = nil;
for actor in actorList do

for rootGoal in goalList(actor) do

rootGoalList = add(rootGoal, rootGoalList);

rootGoal.actor = actor;
end ;

end ;
end ;
concurrent for rootGoal in rootGoalList do

goalAnalysis(rootGoal, actorList)

end concurrent for ;
if not[satisfied(rootGoalList,goalGraph)]

then fail;
end procedure

The procedure rootGoalAnalysis conducts concurrent goal analysis for every
root goal. Initially, root goal analysis is conducted for all initial goals associated with
actors in actorList. Later on, more root goals are created as goals are delegated to
existing or new actors. Note that the concurrent for statement spawns a concurrent
call to goalAnalysis for every element of the list rootGoalList. Moreover, more
calls to goalAnalysis are spawn as more root goals are added to rootGoalList.
Concurrent for is assumed to terminates when all its threads do. The predicate sat-
isfied checks whether all root goals in goalGraph are satisfied. This predicate is
computed in,terms of a label propagation algorithm such as the one described in [22].
Its details are beyond the scope of this paper. RootGoalAnalysis succeeds if there is
a set of non-deterministic selections within the concurrent executions of
goalAnalysis procedures which leads to the satisfaction of all root goals.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 225

The procedure goalAnalysis conducts concurrent goal analysis for every sub-
goal of a given root goal. Initially, the root goal is placed in pendingList. Then,
concurrent for selects concurrently goals from pendingList and for each decides
non-deterministically whether it will be expanded, adopted as a personal goal, del-
egated to an existing or new actor, or whether the goal will be treated as unsatisfiable
(‘‘denied’’). When a goal is expanded, more sub-goals are added to pendingList and
goalGraph is augmented to include the new goals and their relationships to their
parent goal. Note that the selection of an actor to delegate a goal is also non-
deterministic, and so is the creation of a new actor. The four non-deterministic
operations in goalAnalysis are highlighted with times-bold font. These are the
points where the designers of the software system will use their creative in designing
the system-to-be.

procedure goalAnalysis(rootGoal, actorList)

pendingList = add(rootGoal, nil);

concurrent for goal in pendingList do

decision = decideGoal(goal)

case of decision

expand :
begin

newGoalList = expandGoal(goal, goalGraph);

for newGoal in newGoalList do

newGoal.actor = goal.actor;

add(newGoal,pendingList);

end ;
end ;

solve : acceptGoal(goal, agenda(goal.actor));

delegate :
begin

actor = selectActor(actorList);

delegateGoal(goal, actor, rootGoalList, dependencyList);

end ;
newActor :

begin

actor = newActor (goal);

actorList = add(actor, actorList);

delegateGoal(goal, actor, rootGoalList, dependencyList);

end ;
fail : goal.label =‘denied’;

end case of ;
end concurrent for ;

end procedure

Finally, we specify two of the sub-procedures used in goal Analysis, for the lack
of space, others are left to the imagination of the reader. Delegate Goal adds a goal
to an actor’s goal list because that goal has been delegated to the actor. This

BRESCIANI ET AL.226

goal now becomes a root goal (with respect to the actor it has been delegated to),
so another call to goalAnalysis is spawn by rootGoalAnalysis. Also,
dependencyList is updated. The procedure acceptGoal simply selects a plan for a
goal the actor will handle personally from the actor’s capability list. The process we
present here does not provide for extensions to a capability list to deal with a newly
assigned goal.

procedure delegateGoal(goal, toActor, rootGoalList, dependencyList)

begin

add(goal, goalList(toActor));

add(goal, rootGoalList);

goal.actor = toActor;

add(hgoal.actor, toActor, goali, dependencyList);

end

end procedure

procedure acceptGoal(goal, agenda)

begin

plan = selectPlan(goal, capabilityList(goal.actor));

add(hgoal, plani, agenda(goal.actor));

goal.label =‘satisfied’;

end

end procedure

During early requirements, this process analyzes initially identified goals of
external actors (‘‘stakeholders’’). At some point (late requirements), the system-to-be
is introduced as another actor and is delegated some of the sub-goals that have been
generated from this analysis. During architectural design, more system actors are
introduced and are delegated sub-goals to system-assigned goals. Apart from gen-
erating goals and actors in order to fulfill initially specified goals of external stake-
holders, the development process includes specification steps during each phase
which consist of further specifying each node of a model such as those shown in
Figures 3 and 4. Specifications .are given in a formal language (Formal Tropos)
described in detail in [15]. These specifications add constraints, invariants, pre- and
post-conditions which capture more of the semantics of the subject domain. More-
over, such specifications can be simulated using model checking technology for
validation purposes [11, 27].

5. The modeling language

The modeling language is at the core of the Tropos methodology. In this section, the
abstract syntax of the language is defined in terms of a UML metamodel. Following
standard approaches [26]. Tropos has exploited standard four-layer metadata

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 227

architecture, as shown in Table 3. The four-layer architecture makes the Tropos
language extensible in the sense that new constructs can be added. The semantics of
the language (augmented with a powerful fragment of Temporal Logic [10]) is
handled in [15] and will not be discussed here.
The Meta-Metamodel level provides the basis for the metamodel language. In

particular, the meta-metamodel contains language primitives that allows for the
inclusions of constructs such as those proposed in [15]. TheMetamodel level provides
constructs for modeling knowledge level entities and concepts. The Domain level
contains a representation of entities and concepts of a specific application domain,
built as instances of the metamodel level constructs. So, for instance, the examples
used in Section 2 illustrate portions of the eCulture domain model. The Instance level
contains instances of the domain model.
Before moving to the details of the metamodels for the concepts actor, goal and

plan,3 let us present the Tropos model and diagrams.
A Tropos model is a directed labeled graph whose nodes are instances of meta-

classes of the metamodel, namely actor, goal, plan and resource, and whose arcs are
instances of the metaclasses representing relationships between them, dependency,
means-end analysis, contribution and AND/OR decomposition.
Each element in the model has its own graphical representation. In particular, we

use two types of diagram for visualizing the model: the actor diagram and the goal
diagram.
An actor diagram is a graph, where each node represents an actor, and each arc

represents a dependency between the two connecting nodes. The arc is labeled by a
specific dependum. Examples of simple actor diagrams have been presented in
Figures 1 and 6.
A goal diagram represents the perspective of a specific actor. It is drawn as a

balloon and contains graphs whose nodes are goals (ovals) and/or plans (hexagonal
shape) and whose arcs are the different relationships that can be identified among its
nodes.
UML activity diagrams and AUML interaction diagrams are used to represent,

respectively, properties (capability and plan diagrams) and agents’ interaction.
According to the specific process development phase we are considering, we can

define different views of the model. For instance, the early requirement view of the
model will be composed of a set of actor and goal diagrams concerning the social

Table 3. Tropos language metamodel. The four level architecture.

Level Description Examples

Meta-metamodel Specifies language structural elements Attribute, Entity

Metamodel An instance of the meta-metamodel

Defines knowledge level notions

Actor, Goal, Plan

Domain An instance of the metamodel Models

application domain entities

PAT, Citizen, Museum

Instance Instantiates domain model elements John: instance of Citizen

BRESCIANI ET AL.228

actors modeling, while the detailed design view will be composed of a set of AUML
diagrams specifying the agents’s microlevel.

5.1. The concept of actor

A portion of the Tropos metamodel concerning the concept of actor is shown in the
UML class diagram of Figure 13. Actor is represented as a UML class. An actor can
have 0; . . . ; n goals. The UML class Goal represents here both hard and softgoals. A
goal is wanted by 0; . . . ; n actors, as specified by the UML association relationship.
An actor can have 0; . . . ; n beliefs and, conversely, beliefs are believed by 1; . . . ; n
actors.
An actor dependency is a quaternary relationship represented as a UML class. A

dependency relates respectively a depender, dependee, and dependum (as defined
earlier), also an optional reason for the dependency (labeled why). Examples of
dependency relationships are shown in Figures 1, 4, and 6. The early requirements
model depicted in Figure 1, for instance, shows a softgoal dependency between the
actors Citizen and PAT. Its dependum is the softgoal taxes well spent, while the
actors Citizen and PAT play the roles of depender and dependee, respectively.
Figure 2 includes some why associations, depicted as arrows coming out from the

inside of actors’ balloon (e.g., the Citizen) and pointing towards dependums. For
example, the plan use eCulture System plays the role of why for both the dependums
usable eCulture System (softgoal) and eCulture System available (goal).

Dependency

Actor

dependee depender

Belief

dependum Plan

Resource

Goal

{XOR}{XOR}

dependum

dependum

why
0..1

why
0..1

why
0..1

wantshas
1..n

are
believed

wanted
by

1..n

1 1

1

1

1

Figure 13. The UML class diagram specifying the actor concept in the Tropos metamodel.

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 229

5.2. The concept of goal

The concept of goal is represented by the class Goal in the UML class diagram
depicted in Figure 14. The distinction between hard and softgoals is captured
through a specialization of Goal into sub-classes Hardgoal and Softgoal, respectively.
Goals can be analyzed, from the point of view of an actor, performing means-end

analysis, contribution and AND/OR decomposition (listed in order of strength). Let us
consider these in turn.
Means-end analysis is a ternary relationship defined among an actor, whose point

of view is represented in the analysis, a goal (the end) , and a Plan, Resource or Goal
(the means) . Means-end analysis is used in the model shown in Figure 3, where the
goals educate citizens and provide eCultural services, as well as the softgoal
provide interesting systems are means for achieving the goal increase internet use.
Contribution is a ternary relationship between an actor, whose point of view is

represented, and two goals. Contribution analysis strives to identify goals that can
contribute positively or negatively towards the fulfillment of a goal (see association
relationship labeled contributes to in Figure 14). A contribution can be annotated
with a qualitative metric, as used in [7], aenoted by þ;þþ;�;��. In particular, if
the goal g1 contributes positively to the goal g2, with metric þþ then if g1 is

Means-Ends analysis

Actor

Hardgoal

Plan

Resource

AND-OR decomposition

Contribution

OR decompositionAND decomposition

Goal

{XOR}{XOR}

contributed by

Softgoal

end

root

contributes to

means

pointview

0..n 1

subgoal 1..n 1

1

1

11

1

1 1

pointview

pointview

Figure 14. The UML class diagram specifying the the goal concept in the Tropos metamodel.

BRESCIANI ET AL.230

satisfied, so is g2. Analogously, if the plan p contributes positively to the goal g, with
metric þþ, this says that p fulfills g. A þ label for a goal or plan contribution
represents a partial, positive contribution to the goal being analyzed. With labels
��, and � we have the dual situation representing a sufficient or partial negative
contribution towards the fulfillment of a goal. Examples of contribution analysis are
shown in Figure 3. For instance, the goal funding museums for own systems con-
tributes positively to both the softgoals provide interesting systems and
good cultural services, and the latter softgoal contributes positively to the softgoal
good services.
Contribution analysis applied to softgoals is often used to evaluate non-functional

(quality) requirements.
AND/OR decomposition is also a ternary relationship which defines an AND- or

OR-decomposition of a root goal into sub-goals. The particular case where the root
goal g1 is decomposed into a single sub-goal g2, is equivalent to a þþ contribution
from g2 to g1.

5.3. The concept of plan

The concept of plan in Tropos is specified by the class diagram depicted in Figure 15.
Means-end analysis and AND/OR decomposition, defined above for goals, can be
applied to plans also. In particular, AND/OR decomposition allows for modeling the
plan structure.

6. Related work

As stated in the introduction and also presented in [6], the most important feature of
the Tropos methodology is that it aspires to span the overall software development
process, from early requirements to implementation. This is represented in Figure 16
which shows the relative coverage of Tropos as well as i� [36], KAOS [12], GAIA
[34], AAII [20] and MaSE [13], and AUML [1, 5, 25]. Many other agent oriented
software methodologies have been proposed in the past, see for instance [3, 8, 29, 32].
The considerations raised for the methodologies shown in Figure 16 apply to these
latter methodologies as well.
While Tropos covers the full range of software development phases, it is at the

same time well-integrated with other existing work. Thus, for early and late
requirements analysis, it takes advantage of work done in the Requirements Engi-
neering community, and in particular Eric Yu’s i� methodology [36]. As already
noted, much of the Tropos methodology can be combined with non-agent (e.g.,
object-oriented or imperative) software development techniques. For example, one
may want to use Tropos for early development phases and then use UML [2] for
later phases. At the same time, work on AUML [25] allows us to exploit existing
AUML techniques adapted for agent-oriented software development. As indicated
in Figure 16, our idea is to adopt AUML for the detailed design phase. An example
of how this can be done is given in [27].

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 231

The metamodel presented in Section 5 has been developed in the same spirit as the
UML metamodel for class diagrams. A comparison between class diagrams meta-
model and the metamodels for diagrams presented in Section 5 emphasizes the
distinct representational and ontological levels used for class diagrams and actor
diagrams (the former being at the software level, the latter at the knowledge level).
This contrast also defines the key difference between object-oriented and agent-
oriented development methodologies. Agents (and actor diagrams) cannot be
thought as a specialization of objects (and class diagrams), as argued in previous
papers. The difference is rather the result of an ontological and representational
shift. Finally, it should be noted that inheritance, a crucial notion for UML dia-
grams, plays no role in actor diagrams. This is not yet a final decision. However

Means-Ends analysis

{XOR}

Resource

means

AND-OR decomposition

OR-decomposition AND-decomposition

subplanrootActor

pointview

end

0..n

Goal

is capable of

is fulfilled

pointview

1..n

Plan

0..1

1..n

1

1

1

1

1

1

1

1

Figure 15. The UML class diagram specifying the plan concept in the Tropos metamodel.

Tropos

Gaia

AAII and Mase

AUML

Requirements Requirements
ArchitecturalLateEarly

Design
Detailed
Design

Kaos

i*

Figure 16. Comparison of Tropos with other software development methodologies.

BRESCIANI ET AL.232

inheritance, at the current state of the art seems more useful at a software, rather
than a knowledge, level. This view is implicit in our decision to adopt AUML for the
detailed design phase.

7. Conclusions and future work

This paper provides a detailed account of Tropos, a new agent oriented software
development methodology which spans the software development process from early
requirements to implementation for agent oriented software. The paper presents and
discusses the five phases supported by Tropos, the development process within each
phase, the models created through this process, and the diagrams used to describe
these models.
Throughout, we have emphasized the uniform use of a small set of knowledge level

notions during all phases of software development. We have also provided an iter-
ative, actor and goal based, refinement algorithm which characterizes the refinement
process during each phase. This refinement process, of course, is instantiated dif-
ferently during each phase.
Of course, the Tropos methodology is not intended for any type of software. For

system software (such as a compiler) or embedded software, the operating envi-
ronment of the system-to-be is an engineering artifact, with no identifiable stake-
holders. In such cases, traditional software development techniques may be most
appropriate. However, a large and growing percentage of software does operate
within open, dynamic organizational environments. For such software, the Tropos
methodology and others in the same family apply and promise to deliver more
robust, reliable and usable software systems. The Tropos methodology in its current
form is also not suitable for sophisticated software agents requiring advanced rea-
soning mechanisms for plans, goals and negotiations. Further extensions will be
required to the Tropos methodology, mostly at in detailed design phase, to address
this class of software applications.
Our long term objective is to provide a detailed account of the Tropos methodo-

logy. Object-oriented and structured software development methodologies are
examples of the breadth and depth of detail expected by practitioners who use a
particular software development methodology. Of course, much remains to be done
towards achieving this goal. We are currently working on several open problems,
such as the development of formal analysis techniques for Tropos [15]; the formali-
zation of the transformation process in terms of primitive transformations and
refinement strategies [4]; the definition of a catalogue of architectural styles for multi-
agent systems which adopt concepts from organization theory and strategic alliances
literature [22]; the extension of the coverage of the development process by
addressing some aspects currently not fully considered, as requirements elicitation, at
the very beginning of the process, and testing, deployment and maintenance; and,
finally, the development of tools which support the methodology, at least during
some particular phases.
We consider a broad coverage of the software development process as essential for

agent-oriented software engineering. It is only by going up to the early requirements

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 233

phase that an agent-oriented methodology can provide a convincing argument
against other, for instance object-oriented, methodologies. Specifically, agent-
oriented methodologies (although not all of them) are inherently intentional, founded
on notions such as those of agent, goal, plan, etc. Object-oriented ones, on the other
hand, are inherently not intentional, since they are founded on implementation-level
ontological primitives. This fundamental difference shows most clearly when the
software developer is focusing on the (organizational) environment where the sys-
tem-to-be will eventually operate. Understanding such an environment calls (more
precisely, cries out) for knowledge level modeling primitives. The agent-oriented
programming paradigm is the only programming paradigm that can gracefully and
seamlessly integrate the intentional models of early development phases with
implementation and run-time phases. This is the argument that justifies agent-
oriented software development, and at the same time promises for it a bright future.

Acknowledgments

We thank all Tropos Project participants working in Trento, Toronto and elsewhere
for useful comments, discussions and feedback. Special thanks to the anonymous
reviewers of this paper for their helpful feedback.

Notes

1. From the Greek ‘‘tropé’’, which means ‘‘easily changeable’’, also ‘‘easily adaptable’’.

2. Notice that Tropos (as well as other agent-oriented software engineering methodologies) can be used

independently of the fact that one uses AOP as implementation technology.

3. The metamodels concerning the other concepts are defined analogously with the partial description

reported here. A complete description of the Tropos language metamodel can be found in [30].

References

1. B. Bauer, J. P. Müller, and J. Odell, ‘‘Agent UML: A formalism for specifying multiagent software

systems,’’ Int. J. Software. Eng. Knowl. Eng., vol. 11, no. 3, pp. 207–230, 2001.

2. G. Booch, J. Rambaugh, and J. Jacobson, The Unified Modeling Language User Guide, The Addison-

Wesley Object Technology Series, Addison-Wesley, 1999.

3. F. M. T. Brazier, B. Dunin Keplicz, N. Jennings, and J. Treur, ‘‘DESIRE: Modelling multi-agent

systems in a compositional formal framework,’’ Int. J. Coop. Inform. Syst., vol. 9, no. 1, 1997.

4. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. ‘‘Modeling early requirements

in tropos: A transformation based approach,’’ in Wooldridge, et al. [17].

5. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney, J. Stark, and

P. Massoneta, ‘‘Agent oriented analysis using MESSAGE/UML,’’ in Wooldridge, et al. [17].

6. J. Castro, M. Kolp, and J. Mylopoulos. ‘‘Towards requirements-driven information systems engi-

neering: The tropos project,’’ Information Systems, Elsevier: Amsterdam, The Netherlands.

7. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in Software

Engineering, Kluwer Publishing, 2000.

8. P. Ciancarini and M. Wooldridge, (ed.), Agent-Oriented Software Engineering, vol. 1957 of Lecture

Notes in AI., Springer-Verlag, 2001.

BRESCIANI ET AL.234

9. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NuSMV: A new symbolic model checker,’’

Int. J. Software Tools Technol. Transf. (STTT), vol. 2, no. 4, 2000.

10. E. M. Clarke and E. A. Emerson, ‘‘Design and synthesis of synchronization skeletons using branching

time temporal logic,’’ in D. Kozen, (ed.), Proceedings of the Workshop on Logics of Programs, vol. 131

of Lecture Notes in Computer Science, Yorktown Heights, New York, Springer-Verlag: New York,

pp. 52–71, 1981.

11. M. Coburn, ‘‘JACK Intelligent Agents User Guide,’’ AOS Technical Report, Agent Oriented Software

Pty Ltd, July 2000. http://www.jackagents.com/docs/jack/html/index.html.

12. A. Dardenne, A. van Lamsweerde, and S. Fickasu, ‘‘Goal-directed requirements acquisition,’’ Sci.

Comput. Program., vol. 20, no. 1–2, pp. 3–50, 1993.

13. S. A. Deloach, ‘‘Analysis and design using MaSE and agent Tool, in 12th Midwest Artificial Intelli-

gence and Cognitive Science Conference (MAICS 2001), Miami University, Oxford, Ohio, March 31 –

April 1 2001.

14. A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos, ‘‘Information systems as social structures,’’ in

Second International Conference on Formal Ontologies for Information Systems (FOIS-2001), Ogun-

quit, USA, October 17–19 2001.

15. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso, ‘‘Model checking early requirements spec-

ification in Tropos,’’ in Proceedings of the 5th IEEE International Symposium on Requirements Engi-

neering, Toronto, CA, August 2001.

16. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, ‘‘Reasoning with goal models,’’ in S.

Spaccapietra, S. T. March, and Y. Kambayashi, (eds.), 21st International Conference on Conceptual

Model. (ER02), Tampere, Finland, vol. 2503 of Lecture Notes in Computer Science, Springer-Verlag,

2002.

17. P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, and P. Bresciani, ‘‘Agent-oriented software

development: A case study,’’ in S. Sen, J. P. Müller, E. Andre and C. Frassen, (eds.), Proceedings of the

Thirteenth International Conference on Software Engineering – Knowledge Engineering (SEKE01),

Buenos Aires, ARGENTINA, June 13–15, 2001.

18. A. Davis and F. Giunchiglia, Software Requirements:Objects, Functions and States, Prentice Hall, 1993.

19. F. Giunchiglia, J. Mylopoulos, and A, Perini, ‘‘The Tropos software development methodology:

Processes, models and diagrams,’’ in F. Giunchiglia, J. Odell, and G. Weiß, (eds.), Agent-Oriented

Software Engineering III, Third International Workshop (AOSE2002), Bologna, Italy LNCS, Springer-

Verlag, in press.

20. D. Kinny, M. Georgeff, and A. Rao, ‘‘A methodology and modelling technique for systems of BDI

agents,’’ in W. Van de Velde and J. W. Perram, (eds.), Agents Breaking Away: Proceedings of the 7th

European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Springer-Verlag: Berlin,

Germany, 1996.

21. M. Kolp, P. Giorgini, and J. Mylopoulos, ‘‘An goal-based organizational perspective on multi-agents

architectures,’’ in Procedings of the 8th International Workshop on Agent Theories, Architectures, and

Languages (ATAL-2001), Seattle, WA, August 2001.

22. J. Mylopoulos, L. K. Chung, and B. A. Nixon, ‘‘Representing and using non functional requirements:

A process-oriented approach,’’ IEEE Trans. Software Eng., 1992.

23. A. Newell, ‘‘The knowledge level,’’ Artif. Intell., vol. 18, pp. 87–127, 1982.

24. H. Nwana, ‘‘Software agents: An overview,’’ Knowl. Eng. Rev. J., vol. 11, no. 3, 1996.

25. J. Odell, H. Parunak, and B. Bauer, ‘‘Extending UML for agents,’’ in G. Wagner, Y. Lesperance, and

E. Yu, (eds.), Proceedings of the Agent-Oriented Information Systems Workshop at the 17th National

conference on Artificial Intelligence, TX, 2000, pp. 3–17.

26. OMG, OMG Unified Modeling Language Specification, version 1.3, Alpha edition, January 1999.

27. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos, ‘‘A knowledge level software

engineering methodology for agent oriented programming,’’ in Proceedings of the 5th Int. Conference

on Autonomous Agents, Montreal CA, May 2001, ACM.

28. A. S. Rao and M. P. Georgeff, ‘‘Modelling rational agents within a BDI-architecture,’’ in Proceedings

of Knowledge Representation and Reasoning (KRR-91) Conference, San Mateo CA, 1991.

29. J. Sabater, C. Sierra, S. Parsons, and N. R. Jenning, ‘‘Using multi-context systems to engineer exe-

cutable agent,’’ in N. R. Jennings and L. Lesperance, (eds), Proceedings of the 6th International

TROPOS: AN AGENT-ORIENTED SOFTWARE DEVELOPMENT METHODOLOGY 235

Workshop on Agent Theories Architectures, and Languages (ATAL-99), number 1757 in LNCS,

Springer-Verlag, 1999, pp. 277–294.

30. F. Sannicol’91o, A. Perini, and F. Giunchiglia, ‘‘The Tropos modeling language. A User Guide,’’

Technical report, ITC-irst, December 2001.

31. G. Weiss, (ed.), Multiagent System: A modern approach to Distributed AI, MIT Press, 1999.

32. M. Wooldridge, P. Ciancarini, and G. Weiss (eds.), Proceedings of the 2nd International Workshop on

Agent-Oriented Software Engineering (AOSE-2001), Montreal, CA, May 2001.

33. M. Wooldridge and N. R. Jeanings, ‘‘Intelligent agents: Theory and practice,’’ Knowl. Eng. Rev., vol.

10, no. 2, 1995.

34. M. Wooldridge, N. R. Jennings, and D. Kinny, ‘‘The Gaia methodology for agent-oriented analysis

and design,’’ J. Autonomous Agents Multi-Agent Sys., vol. 3, no. 3, 2000.

35. E. Yu, ‘‘Modeling organizations for information systems requirements engineering,’’ in Proceedings of

the First IEEE International Symposium on Requirements Engineering, San Jose, January lEEE, 1993,

pp. 34–41.

36. E. Yu,Modelling Strategic Relationships for Process Reengineering, PhD thesis, University of Toronto,

Department of Computer Science, 1995.

37. E. Yu, ‘‘Agent-oriented modeling: Software versus the world,’’ in Wooldridge et al. [17].

38. E. Yu and J. Mylopoulos, ‘‘Understanding ‘why’ in software process modeling, analysis and design,’’

in Proceedings Sixteenth International Conference on Software Engineering, Sorrento, Italy, May 1994.

39. E. Yu and J. Mylopoulus, ‘‘Using goals, rules, and methods to support reasoning in business process

reengineering,’’ Int. J. Intell. Syst. Account. Finance Manage., vol. 1, no. 5, 1996.

BRESCIANI ET AL.236

