Business Network Analytics

F Schweitzer et al. Science 2009

Business Network Analytics and Business Intelligence

Stop Contagious Failures in Banking Systems

- During 2008 financial tsunami, which bank(s) we should inject capital first to stop contagious failures in bank networks?

Utilize Peer Influence in Online Social Networks

- Influencer Marketing, Product Recommendation
- Who are the most influential people?
- What are the patterns of information diffusion?

Develop Strategies to Attack Terrorist Networks

- How to effectively break down a terrorist network?

Business Networks Analytics and Applications

- Instructor: Prof. Dr. Daning Hu, BIN. 2.A. 12
- TA: Xiao Li, BIN.2.A. 24
- Email: hdaning@ifi.uzh.ch
- Credits: 5 ECTS credits
- Class Schedule:
http://www.ifi.uzh.ch/en/bi/teaching/Fall2017/NA.html
- Language: English
- Audience: Undergraduate and Master students
- Office Hours: Email for appointment, Room 2.A.12.

Grading and Course Goals

- 1. One course project (90%)
- 2. Active participation and interaction during the lectures and tutorials (10\%)
- The project report should include the following four major components:
- Network/Relational Data Collection (15\%)
- Network Data Processing and Modeling (20\%)
- Network Visualization (15\%)
- Network Analysis (30\%)

Example 1: Network Data Collection

- Social Networks: Online communities, Social networking websites, Personal blogs and micro-bloggings, online video sharing websites. (e.g., Programmable Web)

- E-Business: Amazon Web Service, Ebay Data API, Taobao.

- Others: Financial, Education data sources: Stanford SNAP Portal

Example 2: Network Data Processing Modeling

- Extract relations/links from raw data in database tables

| | Thread
 pitch
 (mm) | Minor
 diameter
 Nolerance | Nominal
 diameter
 (mm) | Head
 shape | Price
 for 50
 screws | Available
 at factory
 outlet? | Number
 in stock | Flat or
 Phillips
 head? |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| M4 | 0.7 | 4 g | 4 | Pan | $\$ 10.08$ | Yes | 276 | Flat |
| M5 | 0.8 | 4 g | 5 | Round | $\$ 13.89$ | Yes | 183 | Both |
| M6 | 1 | 5 g | 6 | Button | $\$ 10.42$ | Yes | 1043 | Flat |
| M8 | 1.25 | 5 g | 8 | Pan | $\$ 11.98$ | No | 298 | Phillips |
| M10 | 1.5 | 6 g | 10 | Round | $\$ 16.74$ | Yes | 488 | Phillips |
| M12 | 1.75 | 7 g | 12 | Pan | $\$ 18.26$ | No | 998 | Flat |
| M14 | 2 | 7 g | 14 | Round | $\$ 21.19$ | No | 235 | Phillips |
| M16 | 2 | 8 g | 16 | Button | $\$ 23.57$ | Yes | 292 | Both |
| M18 | 2.1 | 8 g | 18 | Button | $\$ 25.87$ | No | 664 | Both |
| M20 | 2.4 | 8 g | 20 | Pan | $\$ 29.09$ | Yes | 486 | Both |
| M24 | 2.55 | 9 g | 24 | Round | $\$ 33.01$ | Yes | 982 | Phillips |
| M28 | 2.7 | 10 g | 28 | Button | $\$ 35.66$ | No | 1067 | Phillips |
| M36 | 3.2 | 12 g | 36 | Pan | $\$ 41.32$ | No | 434 | Both |
| M50 | 4.5 | 15 g | 50 | Pan | $\$ 44.72$ | No | 740 | Flat |

- Model such relations/links into network data.
- Node data
- Link data

Example 3: Network Visualization

10

Example 4: Network Analytics

A Microblogging Network: Who possesses the most advantageous position in brokering information and knowledge in this network?

Example 5: A Global Terrorist Network

How to effectively break down terrorist networks?

Business Network Analytics or Applications

- Recommender Systems:

Recommended for You

se recommendations a based on items you own and more.
All I New Releases I Coming Soon

Business Network Analytics or Applications

- Social Media based Marketing, Word-of-Mouth Effect

The Social Media Campaign by Gary Hayes \& Laurel Papworth 2008

Computing Tools Required In Tutorials

- Database Management Software
- MySQL or other common DBMS such as MS SQL Server, Oracle, etc.
- Network Visualization Tool: NetDraw, R (Statnet or iGraph)
- Network Analysis Tool: R (Statnet or iGraph), or UCINet

Outline

- Syllabus
- Examples
- Introduction
- Social Network Analysis
- Social Network Data Modeling and Analysis

[^0]
Introduction: Why Study Networks?

- One of the most profound changes in today's world is -

Decentralization

- Economical: BitCoin, Blockchain, P2P lending, etc.
- Social: Social Media News, Online Communities, Terrorist Cells, etc.
- Technological: Open Source Software, Virtual Teams, etc.
- The power, information, resources in real world networks are becoming increasingly decentralized ->
- Nodes are distributed more equally, Less hierarchical;
- Good representations of entities and relationships in decentralized systems.

The Focus: The Influence Mechanisms in Networks

- An average individual (node) can affect system outcome by influencing its linked peers.
- This course will focus on the "influence" mechanisms that network actors affect each other in terms of opinions, behaviors, or risks through various ties, thereby changing the network outcomes
- Economic influence: Risk contagion, etc.
- Social influence: Word-of-Mouth, observation learning, herding, etc.
- Network outcomes: Bank run, stock market crash, product diffusions.

A "Random" History of Network Science

- Mathematical foundation - Graph Theory
- Social Network Analysis and Theories
- Sociogram: Network visualization
- Six degree of separation
- Structural hole: Source of innovation
- (Physicists) Complex Network Topologies
- Small-world model (e.g., WWW)
- Scale-free model ("Rich get richer")
- Network Science
- Economic networks (Agent modeling \& simulation)
- Dynamic network analysis
- BI applications: product diffusion in social media, recommendation systems

Network Science

- Network science is an interdisciplinary academic field which studies complex networks such as information networks, biological networks, cognitive and semantic networks, and social networks. It draws on theories and methods including:
- Graph theory from mathematics, e.g., Small-world
- Statistical mechanics from physics, e.g., Rich get richer,
- Data mining and information visualization from computer science,
- Inferential modeling from statistics, e.g., Collaborative filtering
- Social structure from sociology, e.g., weak tie, structural holes
- Network science can be defined as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."

A "Random" History: Math, Psychology, Sociology...

- The study of networks has emerged in diverse disciplines as a means of analyzing complex relational data.
- Network science has its root in Graph Theory.
- Seven Bridges of Königsberg written by Leonhard Euler in 1736.
- Focusing on the properties of pairwise relations in a network structure.
- Social Network Analysis
- Jacob Moreno, a psychologist, developed the Sociogram and to "precisely describe the interpersonal structure of a group".
- Stanley Milgram (Small World Experiment: Six Degrees of Separation, 1960s). Facebook: 5.28 steps in 2008, 4.74 in 2011.
> "For the last thirty years, empirical social research has been dominated by the sample survey. But as usually practiced, ..., the survey is a sociological meat grinder, tearing the individual from his social context and guaranteeing that nobody in the study interacts with anyone else in it."

> Allen Barton, 1968 (Quoted in Freeman 2004)

Moreover, the complexity of the relational world makes it impossible to identify social connectivity using only our intuition.

Social Network Analysis (SNA) provides a set of tools to empirically extend our theoretical intuition of the patterns that compose social structure.

The Origin of Modern Network Science: Social Network Analysis

Social network analysis (SNA) is a set of relational methods for systematically understanding and identifying connections /ties /relationships among actors.

Social network analysis (SNA)
\square is motivated by a structural intuition based on ties linking social actors
\square is grounded in systematic empirical data
\square draws heavily on graphic theory and imagery
\square relies on the use of mathematical and computational models.

Jacob Moreno's experiment on Friendship Network

EMOTIONS MAPPED BY NEW GEOCRAPHY
 Charts Seek to Portray the Psychological Currents ofHuman Relationships.

New York Times
April 3, 1933

Jacob's experiment is the first to use Social Network Analysis

What Does Social Network Analysis Study?

Social Network analysis lets us answer questions about social interdependence. These include:
"Networks as Variables" approaches

- Are kids with smoking peers more likely to smoke themselves?
- Do unpopular kids get in more trouble than popular kids?
- Do central actors control resources?
"Networks as Structures" approaches
-What generates hierarchy in social relations?
-What network patterns spread diseases most quickly?
- How do role sets evolve out of consistent relational activity?

We don't want to draw this line too sharply: emergent role positions can affect individual outcomes in a 'variable' way, and variable approaches constrain relational activity.

Now...

Complex Networks in the Real World

	Nodes	Links
Social network	People	Friendship, kinship, collaboration
Inter-organizational network	Companies	Strategic alliance, buyer-seller relation, joint venture
Citation network	Documents/authors	Citations
Internet	Routers/computers	Wire, cable
WWW	Web pages	hyperlink
Biochemical network	Genes/proteins	Regulatory effect
\ldots	\ldots	\ldots

Now...

- Universal modeling and analysis methods for complex network data
- Shared vocabulary between fields: Computer Science, Physics, Sociology, Economics, Statistics, Biology
- "Big" Data availability: Internet, mobile, bio, health, security...
- Impact/usage: social networking, social media, marketing, etc.

Our Approach

What

Why

How

- Econometric identification of casual Social and Economic influence
- Distinguishing homophily
- Confounding factors
- PSM, DID, RD, etc.
- Explanations
- Combine social science methods, data mining, machine learning with econometric analysis

Predict link formation

- Simulate the
evolution of networks

What: Social Network Analysis

Social network analysis (SNA) is a set of metrics and methods for systematically describing, modelling, and analyzing relationships among actors.

Social network analysis (SNA)

- is motivated by a structural intuition based on ties linking social actors
- is grounded in systematic empirical data
- draws heavily on graphic imagery
- relies on the use of mathematical and/or computational models.

What is a Network?

Basic Concepts in (Social) Network Analysis

- Node, Actor, Vertex
- Tie, Link, Edges
- Network, System
- A link can be (1) Binary or Valued, (2) Directed or Undirected.

Undirected, binary

Undirected, Valued

Directed, binary

Directed, Valued

Nodes or Social Actors

- Social Network data consists of two linked classes of data: Nodes and Links.
- Node Example: Products in a purchase newtork
- Actor Examples: people in a group, departments within in a corporation, public service agency in a city, nation-states in the world system. "Node" does not imply that they have intention or the ability to "act".
- Network nodes are most often people, but can be any other unit capable of being linked to another (schools, countries, organizations, personalities, etc.)

Links or Ties

- Actors (nodes) are linked to one another by social ties (links)
- Kinship, role-based, cognitive, affective, interactions, affliations
- Example of direct links in SNA (Wasserman/Faust 2008:17):
- Evaluation of one person by another (friendship, liking, or respect)
- Transfers of material resources (business transactions, lending or borrowing things)
- Behavioral interaction (talking together, sending messages)
- Physical connection (a road, river, or bridge connecting two points)

Similarities			Social Relations				Interactions	Flows
Location e.g., Same spatial and temporal space	Membership e.g., Same clubs Same events etc.	Attribute e.g., Same gender Same attitude etc.	Kinship e.g., Mother of Sibling of	Other role e.g., Friend of Boss of Student of Competitor of	Affective e.g., Likes Hates etc.	Cognitive e.g., Knows Knows about Sees as happy etc.	$\begin{gathered} \text { e.g., } \\ \text { Sex with } \\ \text { Talked to } \\ \text { Advice to } \\ \text { Helped } \\ \text { Harmed } \\ \text { etc. } \end{gathered}$	e.g., Information Beliefs Personnel Resources etc.

Weight/Strength of Ties

- We can attach values to ties, representing quantitative attributes Jane
- Strength of relationship
- Information capacity of tie
- Rates of flow or traffic across tie
- Distances between nodes
- Probabilities of passing on information
- Frequency of interaction
- Valued graphs or vigraphs

Positive and Negative Weights

e.g. one person trusting/distrusting another

- Research challenge:

How does one
'propagate' negative feelings in a social network? Is my enemy' s enemy my friend?
sample of positive \& negative ratings from Epinions network

Two Modes of Social Network Analysis

	Complete	Ego
1-mode		
$\begin{aligned} & 2- \\ & \text { mode } \end{aligned}$	$\sqrt{\text { ITM }}$	

One-mode Complete network

One-mode Ego network

Year 1
Year 4

Ego Network Analysis

- Ego Network Analysis combine the perspective of network analysis with the data of mainstream social science
- No computer assisted analysis needed

Two-mode Complete Network (Bipartite Graph)

Two-mode (Bipartite) Network Transformation

(a) A bipartite consumer-product graph consisting of three consumers and 25 books

(b) The consumer graph projected from the bipartite graph depicted in (a)

(c) The product graph proiected from the bipartite graph depicted in (a)

From Zan Huang et al., 2009, Management Science

Network Data Modeling: Adjacency Matrix

Friendship

	Jim Jill Jen Joe			
Jim	-	1	0	
	1			
Jill	1	-	1	
Jen	0			
	0	1	-	
Joe	1			
	1	0	1	

Proximity

Jim Jill Jen Joe				
Jim	-	3	9	2
Jill	3	-	1	15
Jen	9	1	-	3
Joe	2	15	3	

Network Distance (Weighted) Adjacency Matrix

	a	b	C	d	e	f	g
a	0	1	2	3	2	3	4
b	1	0	1	2	1	2	3
C	2	1	0	1	1	2	3
d	3	2	1	0	2	3	4
e	2	1	1	2	0	1	2
f	3	2	2	3	1	0	1
g	4	3	3	4	2	1	0

Major Network Data Formats (in UCINet)

Real World Networks are Sparse Graphs

Most real-world networks are sparse

$$
E \ll E_{\max }(\text { or } \bar{k} \ll N-1)
$$

WWW (Stanford-Berkeley):	$\mathrm{N}=319,717$	$\langle\mathrm{k}\rangle=9.65$
Social networks (LinkedIn):	$\mathrm{N}=6,946,668$	$\langle\mathrm{k}\rangle=8.87$
Communication (MSN IM):	$\mathrm{N}=242,720,596$	$\langle\mathrm{k}\rangle=11.1$
Coauthorships (DBLP):	$\mathrm{N}=317,080$	$\langle\mathrm{k}\rangle=6.62$
Internet (AS-Skitter):	$\mathrm{N}=1,719,037$	$\langle\mathrm{k}\rangle=14.91$
Roads (California):	$\mathrm{N}=1,957,027$	$\langle\mathrm{k}\rangle=2.82$
Proteins (S. Cerevisiae):	$\mathrm{N}=1,870$	$\langle\mathrm{k}\rangle=2.39$

(Source: Leslowect al., Intemet Mothematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix $\left(E / N^{2}\right)$: WWW $=1.51 \times 10^{-5}, \mathrm{MSN}$ IM $=2.27 \times 10^{-8}$)

More Types of Networks

Self-edges (self-loops) (undirected)

$$
A_{i j}=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

- Multigraph
(undirected)

[^0]: * Some of the contents are adapted from Prof. James Moddy's slides at Duke University, and Prof Jure Leskovec and Lada Adamic from Standford University

