
Basic Graph Statistics with R 



http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/examplenode.txt
http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/exampleedge.txt

Exampleedge.txt

from to weight

2 3 10

2 4 3

3 4 4

4 5 9

5 7 8

7 8 4

5 8 3

3 9 1

2 10 1

8 11 3

Examplenode.txt

id rate

• 3 2

• 2 8

• 4 3

• 5 3

• 6 4

• 8 2

• 9 3

• 10 5

• 11 3

Please calculate

• Degree

• Betweenness

• Closeness

• Visualization

Exercise

http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/examplenode.txt
http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/exampleedge.txt


1. library(igraph)



2. Import data
• The <- operator sets a variable equal to something. In this case, we will set a number of basic R 

data structures, called "data  frames," to hold the contents of the files we will open.

• read.table() is the most common R command for loading data from files in which values are in 
tabular format. The function loads the table into a data frame object, which is the basic data type 
for most operations in R. By default, R assumes that the table has no header and is delimited by 
any white space; these settings are fine for our purposes here.

• One handy aspect of R is that you can read in data from a URL directly by referencing the URL in 
the read.table() function

• If the files you want to work with are on your local machine,  the easiest way to access them is to 
first set your working  directory via the setwd() command, and then reference the files by name:

setwd('path/to/your_directory')

your_data_frame <- read.table('your_file_name')



2. Import data

• node <-
read.delim('http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/exampleno
de.txt',header = TRUE)

• relation <-
read.table('http://www.ifi.uzh.ch/bi/teaching/fall2014/lecture/exampleedg
e.txt',header = TRUE)

• To see the data we just loaded, it's necessary to call the variables directly
• node
• relation

• we can see just the top six rows via
• head(node)
• head(relation)



3. Loading graph
• Now we can import our data into a "graph" object using igraph's

graph.data.frame() function. Coercing the data into a graph object is 
what allows us to perform network-analysis techniques.
• testnet <- graph.data.frame(relation)

• By default, graph.data.frame() treats the first two columns of a data 
frame as an edge list and any remaining columns as edge attributes. 
To get a vector of edges for a specific type of tie, use the 
get.edge.attribute() function
• list.edge.attributes(testnet)
• get.edge.attribute(testnet, 'weight')

• Get the vertex of the network.
• V(testnet)

• Get the edges of the network.
• E(testnet)



4. ADDING VERTEX ATTRIBUTES TO A GRAPH 
OBJECT

• list.vertex.attributes(testnet)

• V(testnet)$name

• One way to add the attributes to your graph object is to iterate  
through each attribute and each vertex. 
• V(testnet)$rate = node$rate[match(V(testnet)$name, node$id)]

• V(testnet)$rate



5. Basic Graph Statistics

• degree(testnet)

• betweenness(testnet)

• closeness(testnet)

• sort(degree(testnet))

• mean(degree(testnet))

• sd(degree(testnet))



6. Visualization

• plot(testnet)

• plot.igraph(testnet)

• ?plot

• ?plot.igraph



7. Plotting cutpoints

• Cut points are called “articulation points” in igraph

• V(testnet)$color = "black“

• V(testnet)[articulation.points(testnet)]$color = "red“

• plot(testnet)


