
1Requirements Engineering I – Chapter 8: Formal Specification Languages © 2024 Martin Glinz

Requirements Engineering I

Chapter 8

Formal Specification Languages

Φ, Ψε

Chapter roadmap

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2021 Martin Glinz 2

Algebraic specification

Model-based formal
specification

An overview of Z

Proving properties

Elegant, but not practical

8.1

8.2

8.3

8.5

Benefits, limitations, and
practical use
Where do formal specifications
help?

8.6

Beyond tests and beliefsToday’s general approach to
formal specification

A classic model-based formal
specification language

OCL (Object Constraint
Language)

8.4

A popular formal specification
language, embedded in UML

Φ, Ψε

3

What is a formal specification?

Requirements models with formal syntax and semantics
The vision

l Analyze the problem
l Specify requirements formally
l Implement by correctness-preserving transformations
l Maintain the specification, no longer the code

Typical languages
l “Pure” Automata / Petri nets
l Algebraic specification
l Temporal logic: LTL, CTL
l Set&predicate-based models: Z, OCL, Alloy, B, TLA+

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2024 Martin Glinz

4

What does “formal” mean?

m Formal calculus, i.e., a specification language with
l formally defined syntax

and
l formally defined semantics

m Primarily for specifying functional requirements

Potential forms
l Purely descriptive, e.g., algebraic specification
l Purely constructive, e.g., Petri nets
l Model-based hybrid forms, e.g., OCL or Z

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2024 Martin Glinz

5

8.1 Algebraic specification

m Developed mid 1970ies for specifying complex data types
m Signatures of operations define the syntax
m Axioms (expressions being always true) define semantics
m Axioms describe properties

that are invariant

+ Purely descriptive and
mathematically elegant

– Hard to read
– Over- and underspecification difficult to spot
– Has never made it from research into industrial practice

TYPE Stack
...
push: (Stack, elem) ® Stack;
...
¬ full(s) ® empty(push(s,e)) = false
...

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2024 Martin Glinz

[Pepper et al. 1982 (in German)]

6

8.2 Model-based formal specification

m Mathematical model of system state and state change
m Based on sets, relations and logic expressions
m Typical language elements

l Base sets
l Relationships (relations, functions)
l Invariants (predicates)
l State changes (by relations or functions)
l Assertions for states

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2021 Martin Glinz

The formal specification language landscape

m VDM – Vienna Development Method (Björner and Jones
1978)

m Z (Spivey 1992)
m Alloy (Jackson 2002)
m TLA+ (Lamport 2003)
m B (Abrial 2009)

m OCL (OMG 2014)

7Requirements Engineering I – Chapter 8: Formal Specification Languages © 2022 Martin Glinz

8

8.3 An overview of Z

m A typical model-based formal language
m Only basic concepts covered here
m More detail in the literature, e.g., Jacky (1997)

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2021 Martin Glinz

9

The basic elements of Z

m Z is set-based
m Specification consists of sets, types, axioms and schemata
m Types are elementary sets: [Name] [Date] IN
m Sets have a type: Person: Name Counter: IN
m Axioms define global variables and their (invariant) properties

string: seq CHAR
#string ≤ 64

Declaration

Invariant

IN Set of natural numbers
M Power set (set of all subsets) of M

seq Sequence of elements
#M Number of elements of set M

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

10

The basic elements of Z – 2

m Schemata
l organize a Z-specification
l constitute a name space

Value, Limit: IN
Value ≤ Limit ≤ 65535

Counter
Name

Declaration part:
Declaration of state variables

Predicate part:
• Restrictions
• Invariants
• Relationships
• State change

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

11

Relations, functions und operations

m Relations and functions are ordered set of tuples:
Order: (Part x Supplier x Date)

Birthday: Person ® Date

State change through operations:

D Counter
Value < Limit
Value' = Value + 1
Limit' = Limit

Increment counter D S The sets defined in schema S
will be changed

M' State of set M after executing
the operation

Mathematical equality, no assignment!

A subset of all ordered triples
(p, s, d) with p Î Part,
s Î supplier, and d Î Date

A function assigning a date to a person,
representing the person’s birthday

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

12

Example: specification of a library system

The library has a stock of books and a set of persons who are
library users.
Books in stock may be borrowed.

Stock: Book
User: Person
lent: Book ® Person

dom lent Í Stock
ran lent Í User

Library

® Partial function
dom Domain ...
ran Range...

...of a relation

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

13

Example: specification of a library system – 2

Books in stock which currently are not lent to somebody may
be borrowed

D Library
BookToBeBorrowed?: Book
Borrower?: Person
BookToBeBorrowed? Î Stock\ dom lent
Borrower? Î User
lent' = lent È {(BookToBeBorrowed?, Borrower?)}
Stock' = Stock
User' = User

Borrow

x? x is an input variable
a Î X a is an element of set X
\ Set difference operator
È Set union operator

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

14

Example: specification of a library system – 3

It shall be possible to inquire whether a given book is
available

X Library
InquiredBook?: Book
isAvailable!: {yes, no}
InquiredBook? Î Stock
isAvailable! = if InquiredBook? Ï dom lent

then yes else no

InquireAvailability

X S The sets defined in schema S can
be referenced, but not changed

x! x is an output variable

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

Mini-Exercise: Specifying in Z

Specify a system for granting and managing authorizations
for a set of individual documents.
The following sets are given:

Specify an operation for granting an employee access to a
document as long as access to this document is not
prohibited. Use a Z-schema.
.

Stock Document
Employee: Person
authorized: (Document x Person)
prohibited: (Document x Date)

Authorization

15Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

16

8.4 OCL (Object Constraint Language)

m What is OCL?
l A textual formal language
l Serves for making UML models more precise
l Every OCL expression is attached to an UML model

element, giving the context for that expression
l Originally developed by IBM as a formal language for

expressing integrity constraints (called ICL)
l In 1997 integrated into UML 1.1
l Current standardized version is Version 2.4 of 2014

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2021 Martin Glinz

17

Why OCL?

m Making UML models more precise
l Specification of invariants (i.e., additional restrictions) on

UML models
l Specification of the semantics of operations in UML models

m Also usable as a language to query UML models

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2021 Martin Glinz

18

HR_management

OCL expressions: invariants

m OCL expression may
be part of a UML
model element

m Context for OCL
expression is given
implicitly

m OCL expression may
be written separately

m Context must be
specified explicitly

Employee

personId: Integer {personID > 0}
name: String
firstName: String [1..3]
dateOfBirth: Date
/age: Integer
jobFunction: String
...
...

context HR_manangement::Employee inv:
self.jobFunction = “driver” implies self.age ≥ 18

...

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

19

OCL expressions: Semantics of operations

Employee Document
...
clearanceLevel:

Integer
noOfDocs:

Integer
...

docID: Integer
securityLevel:

Integer
...

authorize (doc:
Document)

context Employee::authorize (doc: Document)
pre: self.clearanceLevel ≥ doc.securityLevel
post: noOfDocs = noOfDocs@pre + 1

and
self.has->exists (a: Authorization | a.concerns = doc)

has
0..*

concerns
1Authorization

grantedOn: Date

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

20

Application of a function to
a set of objects

Navigation from current object to a
set of associated objects

Navigation, statements about sets in OCL

m Persons having Clearance level 0 can’t be authorized for
any document:
context Employee inv: self.clearanceLevel = 0 implies

self.has->isEmpty()

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

21

Navigation, statements about sets in OCL – 2

More examples:
m The number of documents listed for an employee must be

equal to the number of associated authorizations:
context Employee inv: self.has->size() = self.noOfDocs

m The documents authorized for an employee are different
from each other
context Employee inv: self.has->forAll (a1, a2: Authorization |

a1 <> a2 implies a1.concerns.docID <> a2.concerns.docID)

m There are no more than 1000 documents:
context Document inv: Document.allInstances()->size() ≤ 1000

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

22

Summary of important OCL constructs

m Kind and context: context, inv, pre, post
m Boolean logic expressions: and, or, not, implies
m Predicates: exists, forAll
m Alternative: if then else
m Set operations: size(), isEmpty(), notEmpty(), sum(), ...
m Model reflection, e.g., self.oclIsTypeOf (Employee) is true in

the context of Employee
m Statements about all instances of a class: allInstances()
m Navigation: dot notation self.has.date = ...
m Operations on sets: arrow notation self.has->size()
m State change: @pre notation noOfDocs =

noOfDocs@pre + 1
Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

23

8.5 Proving properties

Formal specifications enable proofs (e.g., safety invariants)
m Classic proofs (usually supported by theorem proving

software) establish that a property can be inferred from a
set of given logical statements

m Model checking explores the full state space of a model,
demonstrating that a property holds in every possible state

– Classic proofs are still hard and labor-intensive
+ Model checking is fully automatic and produces counter-

examples in case of failure
– Exploring the full state state space is frequently infeasible
+ Exploring feasible subsets is a systematic, automated test
Requirements Engineering I – Chapter 8: Formal Specification Languages © 2022 Martin Glinz

24

Example: Proving a safety property

A (strongly simplified) elevator control system has been
modeled with a Petri net as follows:

The property that an elevator never moves with doors open
shall be proved

Door
open

Door
closed

Elevator stopped

Elevator
moving

Ready to move
Floor button
pressed

Open
door

Close
door

Move

Stop

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

25

Example: Proving a safety property – 2

The property to be proven can be restated as:
(P) The places Door open and Elevator moving never hold

tokens at the same time
Due to the definition of elementary Petri Nets we have
l The transition Move can only fire if Ready to move has a

token (1)
l There is at most one token in the cycle Ready to move –

Elevator moving – Elevator stopped – Door open (2)
l (2) Þ If Ready to move or Elevator moving have a token,

Door open hasn’t one (3)
l If Door open has no token, Door closed must have one (4)
l (1) & (3) & (4) Þ (P)

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2022 Martin Glinz

26

Mini-Exercise: A circular metro line

A circular metro line with 10 track segments has been modeled
in UML and OCL as follows:

In a circle, every track segment must be reachable from every
other track segment (including itself). So we must have:
context TrackSegment inv (1)

TrackSegment.allInstances->forAll (x, y | x.reachable (y))
a) Falsify this invariant by finding a counter-example

Context TrackSegment::
reachable (a: TrackSegment): Boolean
post:
result = (self.to = a) or (self.to.reachable (a))

context TrackSegment inv:
TrackSegment.allInstances->size = 10

TrackSegment

Occupied: Boolean

reachable (a:TrackSegment)

from
1

to 1
connected

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

27

Mini-Exercise: A circular metro line – 2

Only the following trivial invariant can be proved:
context TrackSegment inv:

TrackSegment.allInstances->forAll (x | x.reachable (x))
b) Prove this invariant using the definition of reachable

Obviously, this model of a circular metro line is wrong. The
property of being circular is not mapped correctly to the model.

c) How can you modify the model such that the original
invariant (1) holds?

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2017 Martin Glinz

8.6 Benefits, limitations, and practical use

Benefits
l Unambiguous by definition
l Fully verifiable
l Important properties can be

• proven
• or tested automatically (model checking)

Limitations / problems
l Cost vs. value
l Stakeholders can’t read the specification: how to validate?
l Primarily for functional requirements

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2024 Martin Glinz 28

[Berry 2002]

29

Role of formal specifications in practice

m Marginally used in practice
l Despite its advantages
l Despite intensive research (dating back to 1977)

m Actual situation today
l Punctual use possible and reasonable, in particular

• Safety-critical components
• Complex distributed systems (Newcombe et al. 2015)

l However, broad usage
• not possible (due to validation problems)
• not reasonable (cost exceeds benefit)

m Alternative: Formalize critical parts of semi-formal models

Requirements Engineering I – Chapter 8: Formal Specification Languages © 2022 Martin Glinz

