
Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2024 Martin Glinz 1

Requirements Engineering I

Chapter 6

Specifying with Natural Language

Chapter roadmap

2Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2023 Martin Glinz

Problems and rules

Phrase templates

User stories

Form templates

All-quantification & exclusion
Good to know

The key means for writing
better NL requirements

The main work product in agile

Help with structured work products

Dangerous if you don’t control it

6.1

6.2

6.3

6.4

6.5

Dealing with redundancy
Readability vs. Consistency &
Modifiablility

6.6

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2021 Martin Glinz 3

Natural language for expressing requirements

The oldest...
...and most widely used way
l taught at school
l extremely expressive

But not necessarily the best
l Ambiguous
l Imprecise
l Error-prone
l Verification primarily by careful reading

The system shall ...

Michelangelo’s Moses (San Pietro in Vincoli, Rome)
Moses holds the Ten Commandments in his hand:
written in natural language

4

6.1 NL requirements: problems and rules

Read the subsequent requirements. Any findings?

“For every turnstile, the total number of turns shall be read and archived
once per day.”

“The system shall produce lift usage statistics.”

“Never shall an unauthorized skier pass a turnstile.”

“By using RFID technology, ticket validation shall become faster.”

“In the sales transaction, the system shall record the buyer’s data and
timestamp the sold access card.”

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2023 Martin Glinz

Some rules for specifying in natural language

m Use active voice and defined subjects

m Build phrases with complete verbal structure

m Use terms as defined in the glossary

m Define precise meanings for auxiliary verbs (shall, should,
must, may,...) as well as for process verbs (for example,
“produce”, “generate”, “create”)

m Check for nouns with unspecific semantics (“the data”, “the
customer”, “the display”,...) and replace where appropriate

m When using adjectives in comparative form, specify a
reference point: “better” ➜ “better than”

5

[Rupp et al. 2020]
[Goetz&Rupp 2003]

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2024 Martin Glinz

6

More rules

m Scrutinize all-quantifications: “every”, “always”, “never”, etc.
seldom hold without any exceptions

m Scrutinize nominalizations (“authentication”, “termination”...):
they may conceal incomplete process specifications

m State every requirement in a main clause. Use subordinate
clauses only for making the requirement more precise

m Attach a unique identifier to every requirement

m Structure natural language requirements by ordering them in
sections and sub-sections

m Avoid redundancy where possible

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2020 Martin Glinz

6.2 Phrase templates

Use templates for creating well-formed natural language
requirements

Typical template:

[<Condition>] <Subject> <Action> <Objects> [<Restriction>]

Example:
When a valid card is sensed, the system shall send
the command ‘unlock_for_a_single_turn’ to the turnstile
within 100 ms.

7

[Mavin et al. 2009]
[Rupp et al. 2020]
[ISO/IEC/IEEE 2018]

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2024 Martin Glinz

EARS

EARS (Easy Approach to Requirements Syntax) provides a
set of templates:

m Ubiquitous requirements (no restrictions)
“The control system shall prevent engine overspeed.”

m Event-driven requirements (WHEN)
“When continuous ignition is commanded by the aircraft, the
control system shall switch on continuous ignition.”

m Unwanted behavior (IF-THEN)
“If the computed airspeed fault flag is set, then the control
system shall use modeled airspeed.”

8Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2021 Martin Glinz

[Mavin et al. 2009]

EARS – 2

m State-driven requirements (WHILE)
“While the aircraft is in-flight, the control system shall maintain
engine fuel flow above XX kg/s.”

m Optional features (WHERE)
“Where the control system includes an overspeed protection
function, the control system shall test the availability of the
overspeed protection function prior to aircraft dispatch.”

m Complex requirements are expressed by combining
keywords:
“While the aircraft is on-ground, when reverse thrust is
commanded, the control system shall enable deployment of the
thrust reverser”.

9Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2021 Martin Glinz

6.3 User stories

m A single sentence about a requirement

m Written from a stakeholder’s perspective

m Optionally including the expected benefit

m Accompanied by acceptance criteria for requirement

m Acceptance criteria make the story more precise

Standard template:

As a <role> I want to <my requirement> so that <benefit>

10

[Cohn 2004]

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2023 Martin Glinz

A sample user story

11

As a skier, I want to pass the chairlift gate so that I get
access without presenting, scanning or inserting a
ticket at the gate.

Author: Dan Downhill Date: 2013-09-20 ID: S-18

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2017 Martin Glinz

Sample acceptance criteria

Acceptance criteria:
l Recognizes cards worn anywhere in a pocket on the left

side of the body in the range of 50 cm to 150 cm above
ground

l If card is valid: unlocks turnstile and flashes a green light
for five seconds or until the turnstile is moved

l If card is invalid: doesn’t unlock gate and flashes a red
light for five seconds

l Time from card entering the sensor range until unlock
and flash red or green is less than 1.5 s (avg) & 3 s (max)

l The same card is not accepted twice within an interval of
200 s

12Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2017 Martin Glinz

Mini-Exercise: Writing a user story

Consider the chairlift access control case study.

Write a story from a skier’s perspective about buying a day
card.

13Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2024 Martin Glinz

6.4 Form templates

m Provide a form with predefined fields to be filled in.

m Examples: • Use case templates (see Chapter 7)
• Quality requirements template

14Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2024 Martin Glinz

Handbook for the CPRE Certified Professional for Requirements Engineering
Foundation Level - Version 1.0.0 Page 37/139

Table 3.3 A form template for specifying measurable quality requirements

Template Example

ID <Number of
requirement>

R137.2

Goal <Qualitatively stated
goal>

Confirm room reservations immediately

Scale <Scale for measuring
the requirement>

Elapsed time in seconds (ratio scale)

Meter <Procedure for
measuring the
requirement>

Timestamping the moments when the
user hits the “Reserve” button and when
the app has displayed the confirmation.
Measuring the time difference.

Minimum <Minimum acceptable
quality to be achieved>

Less than 5 s in at least 95% of all cases

OK range <Value range that is OK
and is aimed at>

Between 0.5 and 3 s in more than 98% of
all cases

Desired <Quality achieved in
the best possible case>

Less than 0.5 s in 100% of all cases

3.3.3 Document Templates

DEFINITION 3.4. DOCUMENT TEMPLATE: A template providing a predefined skeleton
structure for a document.

Document templates help to systematically structure requirements documents—for
example, a system requirements specification. RE document templates may be found
in standards, for example in [ISO29148]. The Volere template by Robertson and
Robertson [RoRo2012], [Vole2020] is also popular in practice. When a requirements
specification is included in the set of work products that a customer has ordered and
will pay for, that customer may prescribe the use of document templates supplied by
the customer. In

Figure 3.1, we show an example of a simple document template for a system
requirements specification.

3.3.4 Advantages and Disadvantages

Using templates when writing RE work products in natural language has major
advantages. Templates provide a clear, re-usable structure for work products, make
them look uniform, and thus improve the readability of the work products. Templates
also help you to capture the most relevant information and make fewer errors of
omission. On the other hand, there is a potential pitfall when Requirements Engineers
use templates mechanically, focusing on the syntactic structure rather than on
content, neglecting everything that does not fit the template.

Measurable quality
requirement template

Document template

A form template for
specifying measurable
quality requirements
[Glinz et al. 2024]

6.5 All-quantification and exclusion

m Specifications in natural language frequently use all-
quantifying or excluding statements without much reflection:

“When operating the coffee vending machine, the user shall
always be able to terminate the running transaction by
pressing the cancel key.”

➪ Scrutinize all-quantifications (“every”, “all”, “always”...) and
exclusions (“never”, “nobody”, “either – or”,...) for potential
exceptions

➪ Specify found exceptions as requirements
15

Also when the coffee is already
being brewed or dispensed?

Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2023 Martin Glinz

6.6 Dealing with redundancy

m Natural language is frequently (and deliberately) redundant

à Secures communication success in case of some
information loss

m In requirements specifications, redundancy is a problem
l Requirements are specified more than once
l In case of modifications, all redundant information must be

changed consistently

m Make redundant statements only when needed for
abstraction purposes

m Avoid local redundancy: “never ever” à “never”

16Requirements Engineering I – Chapter 6: Specifying with Natural Language © 2023 Martin Glinz

