
Structure- and Path-based Graph Queries

Specialization Report, 2014

Andreas Gruhler
12-708-038

1. INTRODUCTION
The goal of querying a database is to find all graphs, in
which the query appears as a subgraph [1, 2]. The correct
result of query q(figure 2) on database D(figure 1) should
be g4. To retrieve results fast, an index has to be built
first (section 2). Afterwards the database is searched for the
specific characteristics of the query using the index (section
3). A candidate query answer set is retrieved. This result
has to be verified, to ensure that false positives are removed
from the set (section 4).

The described high level approach is proposed by numerous
authors. This report holds a comparison between the two in-
dexing methods GraphGrep [2] and gIndex [1]. Experiments
of Yan et al. already led to the conclusion that gIndex per-
forms better and the index size is smaller in comparison to
GraphGrep [1].

1.1 Notation
Throughout this report, the following notation will be used:

Symbol Description
D A graph database
g A graph inside a database
q A query graph
f A fragment/subgraph
Df A set of graphs in D containing fragment

f as subgraph, Df = {gi|f ⊆ gi, gi ∈ D}
|Df | Support of fragment f in database D
Cq The candidate query answer set retrieved

using an index
γmin Minimum discriminative ratio
minSup Minimum support
dfs(g) Canonical label (minimum dfs code) of g

The examples in this report make use of database D(figure
1) and query graph q(figure 2).

a[0] b[1]

(g1)

a[0]

b[1]c[2]

(g2)

a[0]

b[1]c[2]

d[3]

(g3)

b[0]

a[1]c[2]

d[3]

e[4]

(g4)

Figure 1: A sample database D = {g1, g2, g3, g4}. Subscripted
numbers in brackets are only used for the GraphGrep approach.

b[0]

a[2]c[3]

d[1]

Figure 2: A sample query q. Subscripted numbers in brackets
are only used for the GraphGrep approach.

2. INDEX CONSTRUCTION
The two methods use different characteristics of graphs to
build up an index. GraphGrep indexes paths up to a given
length [2] whereas the gIndex stores frequent and discrimi-
native subgraphs [1]. These concepts will be elaborated in
the next two subsections.

Especially in the improved information quality of graphs,
Yan et al. see a major advantage in comparison to paths [1].
The authors of gIndex see two main disadvantages in their
choice of storing subgraphs [1]:

1. Graphs are more difficult to manipulate than paths.

2. Fully connected graphs may contain a very large amount
of subgraphs. Considering the index size, not all of
them can be stored.

2.1 GraphGrep Index Construction
When using GraphGrep [2], the index stores for each graph
in a database all the paths of length 1(one node) up to a
fixed length lp by the sequence of labels on the nodes in
the path, and the sequence of ids on the nodes in the path
(see figure 3 as example for g4). In addition to the paths,
a hash table (called fingerprint) which keeps track of the
occurrences of all paths needs to be stored for each graph
(see figure 4) [2].

a ={(1)} ac = {(1, 2)} acb = {(1, 2, 0)}
ab ={(1, 0)} abc = {(1, 0, 2)} abd = {(1, 0, 3)}
b ={(0)} ba = {(0, 1)} bac = {(0, 1, 2)}
bc ={(0, 2)} bca = {(0, 2, 1)}
bd ={(0, 3)} bde = {(0, 3, 4)}
c ={(2)} ca = {(2, 1)} cab = {(2, 1, 0)}
cb ={(2, 0)} cba = {(2, 0, 1)} cbd = {(2, 0, 3)}
d ={(3)} de = {(3, 4)}
db ={(3, 0)} dba = {(3, 0, 1)} dbc = {(3, 0, 2)}
e ={(4)} ed = {(4, 3)} edb = {(4, 3, 0)}

Figure 3: All paths up to length lp = 3 in g4.

Key g1 g2 g3 g4
h(a) 1 1 1 1
h(ac) 0 1 0 1
h(acb) 0 1 0 1
h(ab) 1 1 1 1
h(abc) 0 1 1 1
h(abd) 0 0 1 1
h(b) 1 1 1 1
h(ba) 1 1 1 1
h(bac) 0 1 0 1
h(bc) 0 1 1 1
h(bca) 0 1 0 1
h(bd) 0 0 1 1
h(bde) 0 0 0 1
h(c) 0 1 1 1
h(ca) 0 1 0 1
h(cab) 0 1 0 1
h(cb) 0 1 1 1
h(cba) 0 1 1 1
h(cbd) 0 0 1 1
h(d) 0 0 1 1
h(db) 0 0 1 1
h(dba) 0 0 1 1
h(dbc) 0 0 1 1
h(de) 0 0 0 1
h(e) 0 0 0 1
h(ed) 0 0 0 1
h(edb) 0 0 0 1

Figure 4: The fingerprint of database D.

According to Sasha et al. [2], the GraphGrep time com-

plexity for index construction is O(
∑|D|

i (nim
lp
i)) and space

complexity is O(
∑|D|

i (lpnim
lp
i)). ni is the number of nodes

in a graph gi ∈ D and mi the maximum degree in this graph.

2.2 gIndex Construction
The gIndex is a structure based indexing approach, where
frequent and discriminative fragments are stored [1]. Figure
5 shows all the subgraphs of D and q, also called fragments
[1].

a b

(f1)

a c

(f2)

c b

(f3)

b d

(f4)

d e

(f5)

a b c

(f6)

b c a

(f7)

c a b

(f8)

b d e

(f9)

a b d

(f10)

c b d

(f11)

e d b c

(f12)

e d b a

(f13)

d b a c

(f14)

d b c a

(f15)

e d b c a

(f16)

e d b a c

(f17)

a

bc

d

(f18)

b

ac

d

(f19)

Figure 5: Subgraphs of D and q.

Every fragment f has a level of support(|Df |) in D, which
represents the number of graphs in D, in which f can be
found as a subgraph [1]. A fragment f is called frequent
fragment, if |Df | ≥ minSup [1]. Figure 6 shows the support
levels and the discriminative ratio γ [1] for the fragments
in figure 5. The discriminative ratio is used by Yan et al.
to further decrease index size, without loosing important
fragments. According to Yan et al. γ is computed as follows
[1]:

γ =
|
⋂

iDfi |
|Df |

The counter corresponds to the number of graphs supported
by all subfragments fi ⊂ f .

A fragment f is indexed if |Df | ≥ minSup∧|
⋂

iDfi |/|Df | ≥
γmin [1]. Figure 7 shows the gIndex tree with γmin = 1 and
minimum support 2, where each indexed fragment is repre-
sented by the minimum dfs code dfs(g)(also called canonical
label [3, 4]) and the index is modelled as a prefix tree of dfs
codes. White nodes are intermediate fragments [1], which
are not discriminative fragments. Colored nodes are the fre-
quent and discriminative fragments. Yan et al. store the
tree as hash table (see figure 8) [1].

fi Dfi |Dfi | γ

f1 {g1 − g4} 4 4
4

= 1

f2 {g2, g4} 2 3
2

= 1.5

f3 {g2 − g4} 3 3
3

= 1

f4 {g3, g4} 2 2
2

= 1

f5 {g4} 1 1
1

= 1

f6 {g2 − g4} 3 3
3

= 1

f7 {g2, g4} 2 2
2

= 1

f8 {g2, g4} 2 2
2

= 1

f9 {g4} 1 1
1

= 1

f10 {g3, g4} 2 2
2

= 1

f11 {g3, g4} 2 2
2

= 1

f12 {g4} 1 1
1

= 1

f13 {g4} 1 1
1

= 1

f14 {g4} 1 1
1

= 1

f15 {g4} 1 1
1

= 1

f16 {g4} 1 1
1

= 1

f17 {g4} 1 1
1

= 1

f18 {g3, g4} 2 2
2

= 1

f19 {g4} 1 1
1

= 1

Figure 6: Support and γ of fragments fi in D.

a

f1

f8 f6

f18

f10

f2

f7

b

f4 f3

f11

(a, b)

(a, b), (a, c)

(a, b), (b, c), (b, d)

(a, b), (b, d)

(a, c)

(a, c), (c, b)

(b, d) (b, c)

(b, c), (b, d)

Figure 7: The gIndex tree of D with minimum support 2 and
γmin = 1.

In the example, the gIndex(figure 8) uses less space than
GraphGrep(figure 3 and 4). GraphGrep would even use
more space than visible on the figures, because a similar
path representation like figure 3 has to be stored for each
graph in D. This space advantage of gIndex can reduce
search time. Yan et al. claim the gIndex is smaller by a
factor of 10 compared to a path based index.

The gIndex authors do not give an estimate on index con-
struction time, but clearly it depends on the chosen param-

Key Links to g ∈ D
h(a) ∅
h(b) ∅
h(dfs(f1)) {g1 − g4}
h(dfs(f2)) {g2, g4}
h(dfs(f3)) {g2 − g4}
h(dfs(f4)) {g3, g4}
h(dfs(f6)) {g2 − g4}
h(dfs(f7)) {g2, g4}
h(dfs(f8)) {g3, g4}
h(dfs(f10)) {g3, g4}
h(dfs(f11)) {g3, g4}
h(dfs(f18)) {g3, g4}

Figure 8: The gIndex tree from figure 7 as hash table (the gIndex
as it is stored in memory). The frequent discriminative nodes link
to their supporting graphs. Intermediate nodes have no values.

eters(minimum support, γmin). Techniques to find frequent
fragments efficiently are available [1].

There even exists the possibility to only look for frequent
and discriminative fragments in a sample of D [1]. The rest
of the index can then be updated incrementally, as long as
the new graphs do not change the frequency and the γ of
the already indexed fragments [1]. According to Yan et al.,
this is rarely the case if the data is from the same dataset.

GraphGrep on the other hand does not come with such an
incremental building strategy.

3. SEARCH
As input for an index lookup, a constructed index and the
query graph from last section is needed. The goal of this
search phase in a graph query is to retrieve a set of candidate
graphs. The set may contain false positives(wrong results),
which will be removed in the verification phase(section 4).

Yan et al. already pointed out, that for graph queries where
structure offers more valuable information than only its paths,
a path based approach like GraphGrep does not provide the
necessary pruning power [1]. A similar demonstrative exam-
ple will be given at the end of subsection 3.1 by modifying
the example database D from figure 1. When applying the
gIndex approach to this modified database in the end of sub-
section 3.2, we will see that it really performs better on such
graphs.

3.1 GraphGrep Search
In GraphGrep [2], a query fingerprint(figure 9) gets com-
pared with the fingerprint of D(figure 4). Graphs in D with
less occurrences of a path (compared to q) are pruned from
the result. Those graphs are g1, g2, g3. The remaining can-
didate query set is {g4}. The cost/time for filtering/search
depends on the size of the query fingerprint.

Key q
h(a) 1
h(b) 1
h(c) 1
h(d) 1
h(ab) 1
h(ac) 1
h(ba) 1
h(bc) 1
h(bd) 1
h(ca) 1
h(cb) 1
h(db) 1
h(abc) 1
h(abd) 1
h(acb) 1
h(bac) 1
h(bca) 1
h(cab) 1
h(cba) 1
h(cbd) 1
h(dba) 1
h(dbc) 1

Figure 9: The fingerprint of query q.

If we modify the example database D and the query q from
figure 1 and 2 and give all nodes the same label c, we can
see that GraphGrep performs differently. Still having lp = 3,
the fingerprint of D would look like this:

Key g1 g2 g3 g4
h(c) 1 1 1 1
h(cc) 1 1 1 1
h(ccc) 0 1 1 1

The fingerprint of query q would be:

Key q
h(c) 1
h(cc) 1
h(ccc) 1

The candidate set is {g2, g3, g4}. g2 and g3 cannot be pruned
in this case, because the fingerprint does not capture the
structure of the graph. This problem was already discovered
by Yan et al. and was the motivation behind structure based
indexes [1].

3.2 gIndex Search
To search the gIndex tree, Yan et al. use apriori pruning
and maximum discriminative fragments [1].

Apriori pruning means, that supergraphs of fragments which
are not found in the index do not need to be looked up in
the index anymore [1]. The subgraphs of q are {f1−f4, f6−
f8, f10, f11, f14, f15, f18, f19}. For each subgraph, Yan et al.
look into the hash table(figure 8), starting with the smallest
fragment. Because f14 and f15 are not in the table, f19 can
be pruned. This is what Yan et al. call apriori pruning [1]
and it is easy to prune because the gIndex tree(figure 7) also
stores intermediate nodes.

The maximum discriminative fragments are the deepest dis-
criminative(colored) nodes in the gIndex tree, which are still
contained in the query [1]. The maximum discriminative
fragments in the remaining set {f1−f4, f6−f8, f10, f11, f18}
are {f8, f18, f10, f7, f4, f11}. Fragments {f1− f3, f6} are be-
ing pruned because there exist deeper discriminative nodes
which are still contained by the query.

The candidate query set is {g4}. This is equal to the inter-
section of all links of the maximum discriminative fragments,
which are the colored leaf nodes of the tree (see figure 7 and
8).

In the example, GraphGrep does 22 index look-ups(fingerprint
size of q), whereas gIndex only needs to do 6({f8, f18, f10, f7,
f4, f11}) thanks to apriori pruning and the use of maximum
discriminative fragments.

If we apply the label change as in subsection 3.1 (we change
all the labels in D and q to be the same), the subgraphs of
D and q would look like in figure 10.

c c

(f1)

c c

c

(f2)

c c

c

(f3

c

cc

c

(f4)

c c c c

(f5)

c c

c

c

(f6)

c c c c c

(f7)

Figure 10: Subgraphs of D and q if all nodes of D and q would
have the same label c.

Support level and γ of those new fragments from figure 10
would be as follows:

fi Dfi |Dfi | γ

f1 {g1 − g4} 4 1

f2 {g2 − g4} 3 4
3

f3 {g2, g4} 2 3
2

f4 {g3, g4} 2 3
2

f5 {g4} 1 3

f6 {g4} 1 1

f7 {g4} 1 1

If we decide not to change the minimum support of 2 and
γmin = 1, the index would consist of fragments {f1 − f4}
(the fragment number refers now to figure 10). The gindex
tree would look like the tree in figure 11 and the hash table
as in figure 12.

The modified query q with all the nodes having the same
label would then have fragments {f1 − f6} as subgraphs.
Since f5 is not indexed, the apriori pruning will remove su-
pergraph f6. In this case the candidate query answer set
calculated using maximum discriminative fragments would
be

⋂4
i=3Dfi = {g4}.

This is a smaller answer set than in section 3.1. According
to Yan et al. this is better, because the overall query consists
of the following components [1]:

Tsearch + |Cq| ∗ Tverification

Tsearch is the time to search, Tverification the time to verify
the result and |Cq| the size of the candidate answer set.

4. VERIFICATION
4.1 GraphGrep Verification
GraphGrep creates a DFS-tree of q and defines patterns of
length lq or less [2]. The patterns of q with lq = 3 are c∗ab,
bc∗ and bd. Overlapping labels are marked with underscore
and asterix. The paths in g4(the remaining graph after fil-
tering) matching these labels are:

cab ={(2, 1, 0)}
bc ={(0, 2)}
bd ={(0, 3)}

Afterwards, Sasha et al. [2] combine the paths, if allowed
by a pattern, to find the exact location of q in g4:

cabc ={((2, 1, 0), (0, 2))}
cabd ={((2, 1, 0), (0, 3))}

c

f1

f2

f3 f4

((1, c), (2, c))

((1, c), (2, c)),
((2, c), (3, c))

((1, c), (2, c)),
((2, c), (3, c)),
((3, c), (1, c))

((1, c), (2, c)),
((1, c), (3, c))

((1, c), (2, c)),
((1, c), (3, c)),
((1, c), (4, c))

Figure 11: The gIndex tree with minimum support 2 and
γmin = 1 for database D if all nodes of every graph in D would
have the same label c.

Key Links to g ∈ D
h(c) ∅
h(((1, c), (2, c)), ((1, c), (3, c))) ∅
h(dfs(f1)) {g1 − g4}
h(dfs(f2)) {g2 − g4}
h(dfs(f3)) {g2, g4}
h(dfs(f4)) {g3, g4}

Figure 12: The gIndex tree from figure 11 as hash table.

c

a

b

d

Figure 13: A DFS-tree of q.

According to Sasha et al. [2], the pattern matching has

complexity O(
∑|Df |

i (ñim
lp
i)p). p is the number of patterns,

ñ the maximum number of nodes having the same label and
|Df | is the size of the database after filtering [2].

4.2 gIndex Verification
To verify the candidate query set, gIndex does subgraph iso-
morphism tests [1]. This ensures that the remaining graphs
share common structure with the query graph [1].

5. REFERENCES
[1] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph

indexing: A frequent structure-based approach. In
SIGMOD ’04, pages 335-346.

[2] D. Shasha, J.T-L Wang, and R. Giugno. Algorithmics
and applications of tree and graph searching. In PODS
’02, pages 39-52.

[3] Xifeng Yan and Jiawei Han. gSpan: Graph-based
substructure pattern mining. In ICDM ’02, pages
721-724.

[4] Xifeng Yan and Jiawei Han. CloseGraph: Mining closed
frequent graph patterns. In KDD ’03, pages 286-295.

