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ABSTRACT
Each tuple in a valid-time relation includes an interval attribute T
that represents the tuple’s valid time. The overlap join between two
valid-time relations determines all pairs of tuples with overlapping
intervals. Although overlap joins are common, existing partitioning
and indexing schemes are inefficient if the data includes long-lived
tuples or if intervals intersect partition boundaries.

We propose Overlap Interval Partitioning (OIP), a new parti-
tioning approach for data with an interval. OIP divides the time
range of a relation into k base granules and defines overlapping
partitions for sequences of contiguous granules. OIP is the first
partitioning method for interval data that gives a constant cluster-
ing guarantee: the difference in duration between the interval of a
tuple and the interval of its partition is independent of the duration
of the tuple’s interval. We offer a detailed analysis of the aver-
age false hit ratio and the average number of partition accesses for
queries with overlap predicates, and we prove that the average false
hit ratio is independent of the number of short- and long-lived tu-
ples. To compute the overlap join, we propose the Overlap Interval
Partition Join (OIPJOIN), which uses OIP to partition the input
relations on-the-fly. Only the tuples from overlapping partitions
have to be joined to compute the result. We analytically derive the
optimal number of granules, k, for partitioning the two input re-
lations, from the size of the data, the cost of CPU operations, and
the cost of main memory or disk IOs. Our experiments confirm the
analytical results and show that the OIPJOIN outperforms state-of-
the-art techniques for the overlap join.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query processing

Keywords
Temporal databases; Overlap join; Interval partitioning

1. INTRODUCTION
A key operation in valid-time databases is the overlap join [11]:

given two valid-time relations r and s, find all pairs of tuples r ∈ r
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and s ∈ s with overlapping intervals, i.e., r.T ∩ s.T . The overlap
join gives the query optimizer an efficient option if other predicates
are absent, exhibit a poor selectivity, or must be evaluated after the
overlapping interval has been computed. For instance, to find em-
ployees who are employed during at least 5 months when a project
is ongoing, we first must determine the overlapping interval be-
tween an employee and a project, and then check that the duration
of the overlapping interval is at least 5 months. Our goal is an ef-
ficient join for interval data that offers the query optimizer a viable
option when other joins do not perform well.

Partitioning techniques for interval data associate each partition
with a partition interval. Each tuple is stored in the best fitting
partition, i.e., the partition interval must cover the interval of the
tuple, and there may not exist a smaller partition interval that cov-
ers the interval of the tuple. As an example, consider a partition
p with partition interval [2012-1, 2012-4] and a tuple s with inter-
val [2012-2, 2012-3]. Tuple s can be stored in partition p since
2012-2 ≥ 2012-1 and 2012-3 ≤ 2012-4, and it is indeed stored in
p if and only if there is no other partition with a smaller partition
interval that covers the interval of s. Since a partition interval is
usually larger than the intervals of the tuples in this partition, we
get false hits when searching in a partition for tuples that overlap a
query interval (a false hit is a tuple that is fetched with a partition
but does not contribute to the result). False hits increase the number
of IOs, since more data must be fetched, and the number of CPU
operations, since false hits must be detected and discarded. In or-
der to reduce the number of false hits, it is possible to create more
partitions. Many partitions, however, increase the number of IOs
since we get more partially filled blocks. This increases the num-
ber of CPU operations for searching and navigating in the access
structure.

This paper proposes the OIPJOIN, together with Overlap Inter-
val Partitioning (OIP), to efficiently compute the overlap join.
OIP partitions the time range of a relation uniformly at a granu-
larity that is given by k temporally disjoint granules of duration d.
We create partitions for all sequences of adjacent granules. This
approach gives a constant clustering guarantee, i.e., the difference
in duration between a tuple and its partition is less than 2d, inde-
pendent of the duration of the tuple. The access structure of OIP ,
termed lazy partition list, omits empty partitions without sacrific-
ing performance or functionality. The OIPJOIN is self-adjusting,
i.e, it automatically determines the optimal number of granules, k,
that minimizes the overhead costs of the OIPJOIN.

Example 1. Figure 1 illustrates OIP with k = 4 granules for
two relations r and s. The time range of r is [2012-5, 2012-11],
and the granules have a duration of d 2012-11−2012-5+1

4
e = d 7

4
e = 2

months. This is the granularity at which relation r is partitioned.
The partitions span 2, 4, 6, or 8 months. Similarly, relation s is par-



titioned over its time range [2012-1, 2012-12]. The granules have a
duration of 3 months, and the partitions span 3, 6, 9, or 12 months.
For the OIPJOIN, r 1r.T∩s.T s, we process for each partition in
r the overlapping (relevant) partitions in s. For instance, for the
partition that contains r1 and r2, three partitions in s are processed,
yielding three false hits, namely {s6} for r1 and {s3, s5} for r2.
For the partition that contains r3, two partitions in s are processed,
and there are no false hits. Overall, five partitions of s are accessed
with three false hits and eight result tuples.

r r1 r2 r3

s

s1 s2 s5

s4
s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

Figure 1: Sample Relations and OIP .

False hits and partition accesses incur overhead costs for the
OIPJOIN. The number of false hits and the number of partition
accesses are inversely related. Increasing the number of granules k
(i.e., shorter granules and more partitions) increases the number of
partition accesses, but decreases the number of false hits, and vice
versa. We analytically derive the k that minimizes the overhead
costs by adapting to the size of the two relations, the cost of CPU
operations, and the cost of IOs. Instead of assuming a dominating
cost factor, we propose a cost model that accounts for CPU and IO
costs. Note that IO costs can be memory IOs or disk IOs. A main
memory IO is faster than a disk IO, but slower than a CPU oper-
ation [20]. Since data are transferred in chunks from the memory
to the processor, it is favorable to store tuples in contiguous main
memory blocks.

Summarizing, our technical contributions are as follows:

• We introduceOIP as partitioning strategy for the OIPJOIN.
OIP offers a constant clustering guarantee, which ensures
that the join does not deteriorate. The difference in duration
between a tuple and its partition is less than two granules.

• We provide a detailed analysis of the average false hit ratio
(AFR) and the average number of partition accesses (APA)
for OIP . We prove that AFR for uniformly distributed
query intervals is smaller than 1

k
and independent of the num-

ber of short- and long-lived tuples.

• The OIPJOIN is self-adjusting, i.e, it automatically deter-
mines the optimal number of granules k. We develop a cost
function for the OIPJOIN and minimize this cost function
to get the optimal number of granules k to partition the re-
lations. k minimizes the overhead costs due to false hits
and partition accesses for IO costs c_io ≥ 0 and CPU costs
c_cpu ≥ 0.

• We describe an implementation of the OIPJOIN based on
OIP and compare it with self-adjusting overlap joins based
on quadtree, loose quadtree, segment tree, and relational in-
terval tree. The experiments confirm that the OIPJOIN out-
performs these approaches.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 provides preliminaries. Section 4 describes

overlap interval partitioning (OIP) and its implementation. Sec-
tion 5 analytically investigates the average false hit ratio (AFR) and
the average number of partition accesses (APA) ofOIP . Section 6
describes the OIPJOIN and derives the optimal value for k. Sec-
tion 7 reports the results of our empirical evaluation.

2. RELATED WORK
We describe, in turn, related work on (a) self-adjusting ap-

proaches that, as the OIPJOIN, adapt to the data and do not re-
quire user-specified parameters; (b) parameter-guided approaches
that can/must be tuned with application-specific parameters; and
(c) disk-based approaches that introduced some of the key concepts
used in later works.

Self-Adjusting Approaches. The quadtree [10, 18] recur-
sively subdivides the space into cells and places objects in the
smallest enclosing cell.1 Since split boundaries are propagated
down the tree and objects are not allowed to overlap boundaries,
small objects that overlap split boundaries end up high in the tree.
Therefore the quadtree does not have a clustering guarantee. For
instance, time range [1, 32] is recursively split into [1, 16] and
[17, 32] and so on, and a tuple with interval [16, 17] is placed in
the root. This yields many false hits for overlap predicates since
all tree nodes that overlap the query interval need to be scanned.
The quadtree relies on a hierarchical tree structure, and in order to
navigate to nodes at lower levels, all parent nodes must be stored,
even if they are empty. To avoid many partially filled blocks, den-
sity based splitting is used, which propagates tuples down the tree
only when blocks are full. This, however, increases the number of
false hits.

The loose quadtree [18, 19] addresses the limitations of the
quadtree for small objects. It permits at each level partially over-
lapping cells. The amount of overlapping is determined by a user-
specified cell expansion factor, p > 0, where p = 1 is widely
accepted as the best value [23, 18]. An expanded cell has width
(1 + p) · w, where w is the width of a quadtree cell. For instance,
time range [1, 32] is recursively split into [1, 24] and [9, 32] and
so on. A tuple with interval [16, 17] is placed in either [14, 17]
or [16, 19], which are the expanded quadtree cells for [15, 16] and
[17, 18]. The join performance deteriorates for long-lived tuples
since the time ranges grow with a factor of two, i.e., the number
of partitions for long-lived tuples is much lower than for small tu-
ples. The loose quadtree provides a clustering guarantee that is not
constant. The guarantee depends on the duration of a tuple and is
weaker for longer tuples. For instance, for p = 1 and a relation
that spans 2000 days, a tuple of duration 80 days can be in a parti-
tion that spans 250 days, yielding a difference of 170 days between
the tuple and the associated partition. A tuple that spans 282 days
can even be in a partition of 1000 days, which is a difference of
718 days.

The relational interval tree [14] implements Edelsbrunner’s in-
terval tree on top of a relational DBMS. The approach uses two
B+-tree indices to index intervals according to a key and start point
and end point. A query interval is first transformed into a key point
list and a key range list, which in a second step are joined with
the B+-tree indices. For instance, given an indexed time range of
[1, 64] and a query interval [5, 7], the key point list is {32, 16, 8}
and the key range list {[4, 4], [5, 7]}. These lists are joined with
the help of the two B+-tree indices to get the final result. Vari-

1In order to manage intervals with 2D access structures we omit
the second dimension, which reduces 2D points and 2D rectangles
to, respectively, 1D points and intervals.



ous join techniques based on the relational interval tree have been
proposed [9], such as an Index-Based Loop Join and several par-
tition based joins (Up-Down, Down-Down, Up-Up depending on
tree traversal). In all these join techniques, long-lived tuples lead
to many CPU operations since a large number of nodes must be
joined. To get a better IO performance for block storage, the data
can be clustered according to an index on either the start or the end
points. Nevertheless, long-lived tuples deteriorate the performance
since for long-lived tuples the clustering of the two indices varies
more than for short-lived tuples.

The segment tree [4, 5] is an indexing technique for intervals. It
builds disjoint segments (intervals) at the leaf level, using all start
and end points in a relation. Internal nodes merge all segments of
their children nodes. A tuple is associated with all sub-tree roots
whose segment is completely covered by the tuple’s interval. The
segment tree efficiently retrieves all tuples that include a given time
point. In order to compute an overlap join, possibly empty parent
nodes must be scanned, and duplicated tuples that are assigned to
multiple nodes must be fetched (IO cost) and identified (CPU cost).
This is particularly expensive for long-lived tuples. For instance,
for a relation with three tuples r1, r2, and r3 with intervals [1, 5],
[3, 9], and [8, 9], respectively, we have at the leaf level (level 2) the
four segments [1, 2], [3, 5], [6, 7], and [8, 9]. At level 1, we have the
segments [1, 5] and [6, 9], and at level 0 (root) the segment [1, 9].
Tuple r2 is stored twice, namely in [3, 5] and [6, 9], and it must be
read twice for the query interval [5, 6].

Parameter-Guided Approaches. In [16], a spatially parti-
tioned temporal join is proposed, where interval data is mapped to
points in a two dimensional grid. Partitions are regions in the plane.
Two relations are joined by determining for each partition of the
outer relation the relevant partitions of the inner relation. Two im-
plementations are proposed, namely to store partitions physically
on disk blocks or to use spatial indices to index the regions of par-
titions. While existing spatial indices can be reused, long-lived tu-
ples substantially increase the number of index nodes to scan. The
number of partitions must be specified by the application.

The snapshot index [22] is an access method for disk resident
transaction-time databases. Intervals in transaction-time databases
are clustered since database modifications occur in increasing time
order. Blocks are distinguished by usefulness according to an ap-
plication parameter a that indicates the number of false hits a block
is allowed to generate. Long-lived tuples are artificially deleted
and re-inserted using controlled splits. Splitting is not a general
solution for valid-time databases since it changes the meaning of
tuples [8, 7]. Parameter a must be chosen as a tradeoff between
artificial splits and false hits.

In [17], an approach is proposed for data that is stored in main
memory. It is similar to the spatial hash join [15] and uses an
R-Tree to group tuples into minimum bounding rectangles (MBRs).
The tuples of one relation are stored in the leaf nodes, and the tu-
ples of the other relation in the lowest internal node, where more
than one child’s MBR overlaps the tuple. The join is performed by
joining leaf with internal nodes. The approach aims to reduce the
number of CPU comparisons and requires three parameters: tree
fanout, number of partitions, and cells per dimension.

Disk-Based Approaches. The size separation spatial join [13]
is a partitioning strategy for the overlap join of disk resident spatial
data and is similar to the quadtree. Instead of using a tree structure,
the levels of the tree are mapped to sorted files. The join is then
performed by a synchronized scan of two sorted files that represent
the partitioned relations. The approach reduces IO and provides

a good filling of blocks, but, due to the recursive space division,
small objects are not guaranteed to be stored at a low level. Thus,
the size separation spatial join has no clustering guarantee and may
produce many false hits.

The grace partition join [21] is used for valid-time natural joins
of disk resident data, i.e., overlap joins with additional equality
predicates. It samples the relations to determine the partitions for
the tuple intervals. A tuple is stored in the last partition it overlaps.
Partitions are joined from the last to the first partition. Long-lived
tuples that overlap several partitions are migrated to the next parti-
tion during join processing. The approach is only efficient for few
long-lived tuples, where the overhead of migration is low.

The R*-tree [2, 3] uses MBRs to group nearby objects and stores
object IDs in the leaf nodes. The internal nodes build an index on
the leaf nodes using MBRs. MBRs of both leaf and internal nodes
might overlap. The tree is expensive to construct due to the prop-
agation of MBRs. Long-lived tuples increase the MBRs and pro-
duce more false hits (page faults). For overlap joins, it is necessary
to follow multiple paths in the R*-tree.

3. PRELIMINARIES
We assume a discrete time domain, ΩT , consisting of a linearly

ordered set of time points. An interval T is a contiguous set of
time points and is represented as a pair [TS , TE ], where TS is the
inclusive start point and TE the inclusive end point. We use the
following operations on time points and intervals: x ∈ T if time
point x is contained in interval T , i.e., TS ≤ x ≤ TE ; Q ∩ T if
Q and T intersect, i.e., there exists a time point x such that x ∈
Q ∧ x ∈ T ; T ⊆ U if interval T is contained in interval U , i.e.,
∀x ∈ T ⇒ x ∈ U ; TE − TS determines the difference in number
of time points between TS and TE ; TS + x shifts time point TS by
x time points to the right, i.e., TE −TS = x⇒ TS +x = TE ; and
|T | = (TE − TS) + 1 is the duration (length) of interval T .

We use tuple timestamping and associate each tuple with a single
interval that represents the tuple’s valid time. A temporal relation
schema is represented as R = (A1, . . . Am, T ), where A1 . . . Am
are attributes with domain Ωi and T is the interval attribute over
ΩT × ΩT . A tuple r over schema R is a finite set that contains
for every Ai a value vi ∈ Ωi and for T an interval [TS , TE ] ∈
ΩT × ΩT . A temporal relation r over schema R is a finite set
of tuples over R. A valid-time relation r spans time range U =
[US , UE ] if US is the smallest start time point of any tuple in r and
UE the largest end time point of any tuple in r. We write l for the
duration of the longest tuple in a relation r, and λ for the duration
of the longest tuple as a fraction of the time range, i.e., λ = l/|U |.
We use indices r and s to distinguish between the outer and inner
relation in joins, e.g., nr and ns are, respectively, the cardinality of
the outer and inner relation in r 1 s.

4. OVERLAP INTERVAL PARTITIONING
In this section, we first define Overlap Interval Partitioning

(OIP) and show how the relevant partitions, i.e., partitions that
overlap a query interval, are calculated. Second, we establish the
constant clustering guarantee. Third, we show how to manage
physical partitions of OIP with a lazy partition list that omits un-
used partitions.

4.1 Definition
OIP divides a time range U into k equally sized granules of

duration d, which define the base granularity of the partitioning
(we discuss in Section 6.2 how to derive k).



Definition 1. (OIP Configuration) Let r be a temporal relation
with time range U = [US , UE ]. AnOIP configuration for a given
k is a triple (k, d, o), where d = d |U|

k
e is the duration of each

granule and o = US is the start point of the partitioned time range.

A partition interval spans a sequence of one or more adjacent
granules. A tuple is assigned to the smallest partition whose parti-
tion interval completely covers the tuple’s interval.

Definition 2. (OIP Partition) Let r be a temporal relation with
OIP configuration (k, d, o). An OIP partition, pi,j , with 0 ≤
i ≤ j < k, spans all granules from i to j and has the partition
interval pi,j .T = [o+ i · d, o+ (j + 1) · d− 1]. A tuple r ∈ r is
placed in partition pi,j iff b r.TS−o

d
c = i and b r.TE−o

d
c = j.

Example 2. Relation s in Figure 2 includes seven tuples and
spans the time range U = [2012-1, 2012-12]. The OIP config-
uration with k = 4 granules is (4, 3, 2012-1) with granule duration
d = d |U|

k
e = d 12

4
e = 3 months and start time point o = US =

2012-1. The partitions that span one granule are p0,0, p1,1, p2,2,
and p3,3, each ranging over three months. The partitions p0,1, p0,2,
p0,3, p1,2, p1,3, and p2,3 span more than one granule each, e.g.,
partition p0,1 spans the range [2012-1, 2012-6]. Tuple s1 is placed
in partition p0,0 since b s1.TS−o

d
c = b 2012-1−2012-1

3
c = b 0

3
c = 0

and b s1.TE−o
d
c = b 2012-1−2012-1

3
c = b 0

3
c = 0. Tuple s6 is placed

in partition p1,3 since b s6.TS−o
d
c = b 2012-6−2012-1

3
c = b 5

3
c = 1

and b s6.TE−o
d
c = b 2012-10−2012-1

3
c = b 9

3
c = 3. Five out of ten

partitions are empty, namely p0,3, p0,2, p1,2, p2,2, and p3,3.

Q

p0,3

p0,2

p1,3

p0,1

p1,2

p2,3p0,0
p1,1 p2,2 p3,3

s1 s2 s5

s4
s6

s7

s3

2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 2012-8 2012-9 2012-10 2012-11 2012-12 t

granule 0 granule 1 granule 2 granule 3

Figure 2: OIP with Configuration (4, 3, 2012-1) for s.

LEMMA 1 (OIP OVERLAP QUERY) Let (k, d, o) be an OIP
configuration and Q = [QS , QE ] be a query interval. The candi-
date tuples that possibly overlap Q are in partitions pi,j for which
i ≤ e = bQE−o

d
c and j ≥ s = bQS−o

d
c. We term these partitions

the relevant partitions; s is the start and e the end index of Q.

PROOF. (By contradiction) Assume a partition pi,j with j <
s = bQS−o

d
c, which contains a tuple r that overlaps Q. Ac-

cording to Definition 2, tuple r is placed in a partition pi,j with
i = b r.TS−o

d
c and j = b r.TE−o

d
c. Since j < s, we get

r.TE < QS , i.e., r.T and Q do not overlap, which contradicts
our assumption. Similarly, a tuple in pi,j with i > e = bQE−o

d
c

cannot overlap Q since r.TS > QE .

Example 3. Consider Figure 2 with the OIP configuration
(4, 3, 2012-1) and the query interval Q = [2012-5, 2012-5]. For
the relevant partitions, pi,j , the following constraints hold: i ≤ e =
bQE−o

d
c = b 2012-5−2012-1

3
c = b 4

3
c = 1 and j ≥ s = bQS−o

d
c =

b 2012-5−2012-1
3

c = b 4
3
c = 1. This is satisfied for partitions p0,3, p0,2,

p0,1, p1,3, p1,2, and p1,1 (gray boxes), which contain all candidate
tuples for the query interval Q.

Next, we establish the constant clustering guarantee of OIP:
the difference in duration between a tuple and its partition is less
than two granules, i.e., constant and independent of the duration
of a tuple. Note that the number of time points per granule or the
duration of a granule have no impact on our solution. The constant
clustering guarantee ensures (a) an excellent partitioning since the
difference in duration between a tuple and its partitions is less than
two granules, (b) an average false hit ratio that is independent of
the intervals of tuples (cf. Section 5.1), and (c) it allows to take
advantage of empty partitions by increasing k (cf. Section 6.2).

LEMMA 2 (CONSTANT CLUSTERING GUARANTEE) Let (k, d, o)
be anOIP configuration for relation r. The difference in duration
between a tuple r ∈ r and its partition p is less than 2d:

∀r ∈ r(r ∈ p⇒ |p.T | − |r.T | < 2d).

PROOF. We show that the difference in duration of the smallest
tuple in a partition pi,j and pi,j is less than 2d. A tuple r is placed
in partition pi,j iff i = b r.TS−o

d
c and j = b r.TE−o

d
c (cf. Defini-

tion 2). Thus, we have i · d ≤ r.TS − o ≤ (i + 1)d − 1 and
j · d ≤ r.TE − o ≤ (j + 1)d − 1. The smallest tuple in pi,j has
duration |[(i + 1)d − 1, j · d]| = j · d − (i + 1)d + 2, and pi,j
has duration |[i · d, (j + 1)d− 1]| = (j + 1)d− i · d. Hence, the
difference in duration between the smallest tuple r in pi,j and pi,j
is 2d− 2 < 2d.

For instance, for a relation that spans 2000 days and with k =
200, we have d = 10 days. A tuple that spans 80 days can be in
a partition that spans 90 days, which is a difference of 10 days. A
tuple that spans 282 days can be in a partition that spans 300 days,
which is a difference of 18 days. Note that the difference is always
less than 2d = 20 days.

4.2 Lazy Partitioning
We represent theOIP access structure as a triangle in a distance

regular square grid graph [6], as illustrated in Figure 3(a) for the
OIP in Figure 2. We call this a triangular grid graph with grid
points (i, j) for 0 ≤ i ≤ j < k. To find all relevant partitions for a
query interval with start index s and end index e, we determine all
partitions pi,j for which j ≥ s and i ≤ e (cf. Lemma 1). We start at
the top-left corner of the grid (i.e., i = 0, j = k−1 = 3) and move
along the path with decreasing j as long as j ≥ s. At each node
p0,j , we follow the path with increasing i as long as i ≤ min(j, e).
In Figure 3(a), the relevant partitions (gray) for query intervalQ are
on the paths p0,3 → p1,3, p0,2 → p1,2 and p0,1 → p1,1.

Q

p0,0

p0,1

p0,2

p0,3

p1,1

p1,2

p1,3

p2,2

p2,3 p3,3

+i

−j

(a) Triangular Grid Graph.

Q

p0,0

p0,1 p1,1

p1,3 p2,3

(b) Lazy Partition List.

Figure 3: Management of OIP Partitions.

The number of possibleOIP partitions corresponds to the num-
ber of nodes in a triangular grid graph and grows quadratically with
the number of granules k.



PROPOSITION 1 (NUMBER OF PARTITIONS) For k granules, the
number of possible partitions is |p| =

∑k−1
i=0 (k − i) = k2+k

2
.

The lazy partition list is a compressed triangular grid graph that
includes only non-empty partitions. Figure 3(b) shows the lazy par-
tition list of our example. It includes only the non-empty partitions
and the directed edges that are needed for navigation. The main list
starts at the upper-left corner and connects nodes with decreasing j
from top to bottom. Each node of the main list starts a branch list
that connects (from left to right) nodes with the same j-value and
increasing i-value.

The lazy partition list has the following advantages: (a) the num-
ber of CPU operations is reduced since empty partitions do not ap-
pear in the access structure; (b) k can be increased if not all parti-
tions are used (cf. Section 5.2 and Section 6.2); and (c) the number
of partitions is upper bounded by the cardinality of the partitioned
relation, independent of the value of k.

LEMMA 3 (NUMBER OF PARTITIONS WITH LAZY PARTITION-
ING) Assume an OIP configuration (k, d, o) for a relation r with
n tuples whose valid time duration is at most λ. The number of
partitions, |p|, ofOIP for r is upper bounded by min(kdλ · ke+

k − dλ·ke
2

2
− dλ·ke

2
, n).

PROOF. Tuples in r span at most dλ · ke granules. From
Lemma 2 we have that the difference in duration of a partition
and its tuples is less than two granules. Thus, the longest used
partition spans at most dλ · ke + 1 granules, and we have |p| ≤∑dλ·ke+1−1
x=0 (k − x) = kdλ · ke + k − dλ·ke

2

2
− dλ·ke

2
. Since

empty partitions are not created, |p| cannot exceed n.

Example 4. Assume a relation with tuple durations up to 20%
of the relation’s time range, i.e., λ = 0.2. With k = 200, at most
200d0.2 · 200e+ 200− d0.2·200e

2

2
− d0.2·200e

2
= 7, 380 partitions

out of 2002+200
2

= 20, 100 possible partitions are used, i.e., 37%,
while 63% are empty.

4.3 Implementation of OIP
Our implementation ofOIP uses a lazy partition list, L, to keep

track of indices and storage blocks of partitions. Figure 4 shows the
lazy partition list for our running example.

p0,0

p0,1 p1,1

p1,3 p2,3

L

s1, s2 s5 s3 s7 s4, s6
RAM/DISK

Figure 4: OIP Lazy Partition List L with Block Pointers.

Algorithm 1 creates the lazy partition listL for an input relation r
with n tuples and anOIP configuration (k, d, o). After initializing
an empty partition list, the relation is sorted according to the tuples’
partition pi,j with j in ascending and i in descending order. The
indices i and j of the partition to which a tuple r is assigned are
computed according to Definition 2. The sorting ensures that tuples
fall either into the first node of the list (c = nil ∨ c.j < j) or into
a new node that is prepended to L.head (c.i > i). The sorting
reduces the complexity of insertions from O(k) to O(1) and gives
a total runtime complexity for constructing L ofO(n logn), which
is independent of k and ensures that storage blocks are allocated
sequentially.

Algorithm 1: OIPCREATE (r, (k,d,o))
Input: Relation r andOIP configuration (k, d, o)
Output: Partition list L
L := empty partition list;
Sort r by b r.TE−o

d
c ASC and b r.TS−o

d
c DESC;

foreach r ∈ r do
i := b r.TS−o

d
c;

j := b r.TE−o
d
c;

c := L.head;
if c = nil ∨ c.j < j then
L.head := new node with partition pi,j ;
L.head.down := c;

else if c.i > i then
L.head := new node with partition pi,j ;
L.head.down := c.down;
L.head.right := c;

Add r to L.head;

return L;

Example 5. Consider relation s in Figure 2. The call of
OIPCREATE (s, (4,3,2012-1)) constructs L2 as follows:

1. r = sort(s) = 〈s1, s2, s5, s3, s7, s4, s6〉, L = 〈〉

2. r = s1, i = b 2012-1−2012-1
3

c = 0, j = b 2012-1−2012-1
3

c = 0,
L = 〈〈(0, 0, {s1})〉〉

3. r = s2, i = b 2012-2−2012-1
3

c = 0, j = b 2012-3−2012-1
3

c = 0,
L = 〈〈(0, 0, {s1, s2})〉〉

4. r = s5, i = b 2012-5−2012-1
3

c = 1, j = b 2012-5−2012-1
3

c = 1,
L = 〈〈(1, 1, {s5})〉, 〈(0, 0, {s1, s2})〉〉

5. r = s3, i = b 2012-2−2012-1
3

c = 0, j = b 2012-5−2012-1
3

c = 1,
L = 〈〈(0, 1, {s3}), (1, 1, {s5})〉, 〈(0, 0, {s1, s2})〉〉

The algorithm terminates and returns the lazy partition list
L = 〈〈(1, 3, {s4, s6}), (2, 3, {s7})〉, 〈(0, 1, {s3}), (1, 1, {s5})〉,
〈(0, 0, {s1, s2})〉〉, which is illustrated in Figure 4.

5. ANALYTICAL RESULTS OF OIP
In this section, we analyze the quality of OIP using two dif-

ferent measures. The average false hit ratio, AFR, measures the
precision of a partitioning in terms of the average number of tuples
that are retrieved for a query interval but do not contribute to the
result. The average number of partition accesses, APA, quantifies
the number of partitions that are fetched for a query.

5.1 Average False Hit Ratio

Definition 3. (False Hits) Let P be a partitioning of a valid-time
relation r and Q be a query interval. The false hits, F(P,Q), are
the tuples that are retrieved when fetching the relevant partitions,
but are not part of the query result, i.e.,

F(P,Q) = {r | ∃p ∈ P
(
r ∈ p ∧ p.T ∩Q ∧ ¬ (r.T ∩Q)

)
}.

Consider Figure 2. For the query intervalQ = [2012-5, 2012-5],
only the relevant partitions are fetched (i.e., p1,1, p0,1, p1,3). The
false hits are F(OIP, Q) = {s6} since partition p1,3 is fetched,
but s6 does not overlap Q. The result tuples are s3, s4, and s5.
2We use nested lists as an abstract notation. For instance, L =
〈〈a〉, 〈b, c〉〉 has nodes a, b, c; L.head = a; a.down = b;
b.right = c; a.right, b.down, c.down, and c.right are nil.



We proceed by defining the sum false hit ratio as the percentage
of false hits over all possible point queries, i.e., the false hits pro-
duced by all queries over query intervals of duration 1 divided by
the total number of tuples.

Definition 4. (Sum False Hit Ratio) Let P be a partitioning of a
valid-time relation r with time range U . The sum false hit ratio,
SFR(P ), for all query intervals [x, x] that overlap U is defined as

SFR(P ) =

∑
x∈U |F(P, [x, x])|

|r| .

For the OIP shown in Figure 2, we have SFR(OIP) =
|F(OIP,[2012-1,2012-1])|+···+|F(OIP,[2012-12,2012-12])|

7
= 14

7
= 2. Thus,

for all query intervals of duration 1, two times the number of tuples
in s are retrieved as false hits.

LEMMA 4. The sum false hit ratio of a partitioning P over a
time range U is independent of the query interval duration q, i.e.,
it is the same for all query intervals [x, x + q − 1] that overlap U
for any value of q:

SFR(P ) =

∑
x∈U |F(P, [x, x])|

|r| =

∑
Q:Q∩U∧|Q|=q |F(P,Q)|

|r| .

PROOF. Consider a time point x ∈ U and a partition p ∈ P .
Query interval [x, x] of duration 1 can produce false hits in p if
there is a non-overlapping part before x (i.e., p.TS < x) and/or a
non-overlapping part after x (i.e., x < p.TE). All tuples that start
and end in one of the two non-overlapping parts are false hits. We
consider now query intervals of duration q > 1. The query interval
[x, x+q−1] produces the same non-overlapping part before x, and
the query interval [x−q+1, x] the same non-overlapping part after
x, yielding together exactly the same false hits for partition p as
the point query with interval [x, x]. Since for each x there exists
exactly one query interval of duration q that starts at x and one that
ends at x, it is straightforward to generalize this result to the sum
over all partitions and time points inU . This proves the lemma.

Next, we define the average false hit ratio for an arbitrary query
interval of duration q ≥ 1.

Definition 5. (Average False Hit Ratio) Let P be a partitioning
for a relation r with time range U . The average false hit ratio,
AFR(P ), for a query interval duration q is defined as

AFR(P ) =
SFR(P )

|U |+ q − 1
.

PROPOSITION 2. The AFR(P ) decreases monotonically with
increasing query interval duration q.

Example 6. Consider Figure 2 with the time range U =
[2012-1, 2012-12] and the sum false hit ratio SFR(OIP) = 2. The
number of query intervals of duration q = 1 is |U | + q − 1 = 12,
yielding an average false hit ratio AFR(OIP) = 2· 1

12
(= 16.7%),

i.e., on average 16.7% of the fetched tuples are false hits. The num-
ber of query intervals of duration q = 5 is |U |+q−1 = 16, yielding
an average false hit ratio AFR(OIP) = 2 · 1

16
(= 12.5%).

For the analysis of the average false hit ratio of OIP in the fol-
lowing Theorem 1, we use duration complete relations. A duration
complete relation, rlU , contains exactly one tuple for each interval
up to a duration l in the time range U , i.e.,

∀T ⊆ U(|T | ≤ l⇒ ∃r ∈ rlU (r.T = T )),

∀r ∈ rlU (|r.T | ≤ l),

∀r, r′ ∈ rlU (r 6= r′ ⇒ r.T 6= r′.T ).

For instance, the duration complete relation r2[0,3] contains a to-
tal of seven tuples with intervals [0, 0], [1, 1], [2, 2], [3, 3], [0, 1],
[1, 2], [2, 3]. Duration complete relations ensure that the AFR is
calculated over tuples of all possible positions and durations in U .

THEOREM 1. Assume an OIP with configuration (k, d, o).
The average false hit ratio for duration complete relations is in-
dependent of the duration of the tuples and upper bounded by

AFR(OIP) <
1

k
.

The proof of Theorem 1 is provided in the Appendix.

5.2 Average Number of Partition Accesses
The average number of partition accesses, APA, quantifies how

many partitions are accessed on average to retrieve all tuples that
overlap a query interval, i.e., how many relevant partitions exist.

LEMMA 5 (APA UPPER BOUND) Assume an OIP with configu-
ration (k, d, o), where all partitions are used. The average number
of partition accesses for query intervals with uniformly distributed
start and end time points is:

APA(OIP) ≤ k2 + k + 1

3
.

PROOF. For query intervals with uniformly distributed start and
end time points, every query interval starting in granule s and end-
ing in granule e has the same probability. Thus, we need to com-
pute the number of partitions that a query interval accesses when
starting in s and ending in e, which is the total number of partitions
minus all partitions ending before s and all partitions starting after
e as follows:

#acc(s, e) =
k2 + k

2
−
s−1∑
i=0

(s− i)−
k−e−1∑
i=0

(k − e− 1− i)

= k + k · e− s2 + s

2
− e2 + e

2
.

We sum the number of partition accesses, #acc(s, e), for all s ≤
e < k and divide the sum by the cardinality of s ≤ e < k to get:

APA(OIP) =

∑k−1
e=0

∑e
s=0(#acc(s, e))∑k−1

e=0

∑e
s=0(1)

=
k2 + k + 1

3
.

Since empty partitions are not present in the OIP access struc-
ture, APA is reduced if not all partitions are used. We use a tight-
ening factor to quantify the reduction of partitions with lazy par-
titioning. The tightening factor, τ , with 0 < τ ≤ 1, is cal-
culated as the ratio between the number of used partitions with
lazy partitioning (Lemma 3) and the total number of partitions
(Proposition 1). For instance, the tightening factor in Example 4
is τ = 1890/5050 = 0.37.

THEOREM 2 (APA) Assume anOIP configuration (k, d, o) for a
relation with n tuples and a tightening factor τ with 0 < τ ≤ 1.
The average number of partition accesses is:

APA(OIP) ≤ min(τ · k
2 + k + 1

3
, n).

PROOF. The proof follows from Lemma 5 and Lemma 3. The
tightening factor τ is the ratio of the number of used and the num-
ber of possible partitions. The inequality holds since the multi-
plication with τ conservatively assumes that the longest partitions,
which produce more partition accesses than shorter partitions, are
omitted.



6. THE OVERLAP JOIN OIPJOIN

This section presents the OIPJOIN algorithm, derives the opti-
mal number of granules k, illustrates its calculation by an example,
and analyzes the runtime complexity of the OIPJOIN.

6.1 The OIPJOIN Algorithm
Algorithm 2 computes the OIPJOIN for relations r and s. First,

k (cf. Section 6.2) and theOIP configurations of the two relations
are determined. The partitions are created by calling OIPCREATE,
and the result relation z is initialized. Then, the algorithm iterates
over each outer partition in Lr and performs an overlap query (cf.
Lemma 1) with the query interval [QS , QE ] of the outer partition
(cf. Definition 2). If [QS , QE ] does not overlap the time range of
the inner relation s, the outer partition is skipped. Otherwise, the
indices s and e of the query interval [QS , QE ] are determined. The
relevant partitions of the inner relation that overlap with the query
interval are fetched, and the tuples are joined with the tuples in the
outer partition. The result tuples are collected in z.

Algorithm 2: OIPJOIN (r, s)
Input: Relation r and relation s
Output: z = {r ◦ s | r ∈ r ∧ s ∈ s ∧ r.T ∩ s.T}
Determine k for r and s for given IO and CPU costs;
Determine configurations (k, dr, or) for r and (k, ds, os) for s;
Lr ← OIPCREATE(r, (k, dr, or));
Ls ← OIPCREATE(s, (k, ds, os));
z := ∅;
foreach node cr in Lr do

QS := or + cr.i · dr ;
QE := or + (cr.j + 1) · dr − 1;
if QE ≥ os ∧QS < os + k · ds then

s := bQS−os
ds

c;
e := bQE−os

ds
c;

cs := Ls.head;
while cs 6= nil ∧ cs.j ≥ s do

x := cs;
while x 6= nil ∧ x.i ≤ e do

z := z ∪ { joined tuples from cr and x};
x := x.right;

cs := cs.down;

return z;

Example 7. Consider Figure 1 with k = 4. We get the
OIP configurations (4, 2, 2012-5) for r and (4, 3, 2012-1) for s.
OIPCREATE creates the lazy partition lists Lr = 〈〈(1, 3, {r3})〉,
〈(0, 0, {r1, r2})〉〉 and Ls = 〈〈(1, 3, {s4, s6}), (2, 3, {s7})〉,
〈(0, 1, {s3}), (1, 1, {s5})〉, 〈(0, 0, {s1, s2})〉〉. The first outer par-
tition is processed as follows:

cr = (1, 3, {r3})
QS = 2012-5 + 1 · 2 = 2012-7
QE = 2012-5 + (3 + 1) · 2− 1 = 2012-12

s = b 2012-7−2012-1
3

c = b 6
3
c = 2

e = b 2012-12−2012-1
3

c = b 11
3
c = 3

cs = Ls.head = (1, 3, {s4, s6})
x = cs = (1, 3, {s4, s6})

z = {r3 ◦ s4, r3 ◦ s6}
x = x.right = (2, 3, {s7})
z = {r3 ◦ s4, r3 ◦ s6, r3 ◦ s7}

cs = cs.down = (0, 1, {s3})

The second (and last) outer partition, cr = (0, 0, {r1, r2}), is pro-
cessed in a similar way, yielding the final result z = {r3 ◦ s4,
r3 ◦ s6, r3 ◦ s7, r1 ◦ s3, r1 ◦ s4, r1 ◦ s5, r2 ◦ s4, r2 ◦ s6}.

6.2 Number of Granules k
Choosing k (i.e., the number of granules) is the most important

decision for the OIPJOIN. In order to derive k for the outer and
the inner relation, we proceed in two steps. First, we provide a
cost function for the OIPJOIN, and second, we minimize the cost
function with respect to k.

Cost Function. The cost function considers the CPU cost of a
comparison operation (c_cpu) and the cost of a block IO (c_io).
A block IO can refer to either main memory or disk. The cost
function models the overhead due to partition accesses and false
hits. Recall that the cost for creating the partitioning is, due to
sorting, independent of k and thus not included in the cost function.

Let kr and ks be the number of granules for the outer and inner
relation, respectively. For the join we fetch, for each of the O(k2r)
outer partitions, O(k2s) inner partitions, i.e., O(k2r · k2s). Further-
more, for each outer and inner tuple we have, respectively, O(ns

ks
)

and O(nr
kr

) false hits, i.e., O(ns · nr
kr

+ nr · ns
ks

). Both, O(k2r · k2s)
and O(ns · nr

kr
+nr · ns

ks
) reach their minimum when kr = ks, i.e.,

outer and inner relation are partitioned using the same number of
granules k. Thus, we have a cost function with k = kr = ks:

cost(k) = |pr| · APA · (c_io+ 2 · c_cpu) +

|pr| · ns · AFR · (
c_io
b

+ 2 · nr|pr|
· 2 · c_cpu)

= x · APA + y · AFR

(1)

The first line is the cost for partition accesses. For each of the
|pr| outer partitions, the algorithm accesses APA inner partitions.
Each partition access costs one extra c_io since an inner partition
can have at most one partially filled block (remember we only mea-
sure the overhead) and two c_cpu (comparison i and j) for check-
ing if this partition in the lazy partition list is relevant. The second
line is the cost for false hits. For each of the |pr| outer partitions,
ns · AFR false hits in the relevant inner partitions produce extra
block transfers, where b is the average number of tuples per block
of the inner relation. The costs for identifying false hits is two
c_cpu (comparison TS and TE) for each false hit in the outer par-
tition and each false hit in the relevant inner partitions.

Determining k. We derive k by minimizing the cost function
using the partial derivative of x·APA+y ·AFR. The terms quantify,
respectively, the increase of the costs due to partition accesses and
the decrease of the costs due to false hits. k can be increased as
long as the costs for AFR decrease more than the costs for APA
increase. The optimal k is the point where the cost for accessing
partitions starts growing faster than the cost for false hits decreases,
which is the minimum of the cost function.

Since the complexity of the cost function prevents an analytical
solution of the minimization problem, we proceed in two steps to
derive k. First, we keep |pr| and τ constant and derive k as follows:

1. Compute the partial derivative of x · APA + y · AFR. We
use APA and AFR from Theorems 1 and 2 to get x · τ ·
k2+k+1

3
+ y · 1

k
. The partial derivative with respect to k is

∂k(x · τ · k
2+k+1

3
+ y · 1

k
) = x · τ · ( 2

3
· k + 1

3
)− y

k2
.

2. Solve x · τ · ( 2
3
·k+ 1

3
)− y

k2
= 0 to get the k that minimizes

the cost function:



k =

3
√

(162 · y − x · τ + 18 ·
√
y · (81 · y − x · τ)) · (x · τ)2

6 · x · τ
+

+
x · τ

3( 3
√

(162 · y − x · τ + 18 ·
√
y · (81 · y − x · τ)) · (x · τ)2

−
1

6
≈ 3

√
3 · y

2 · x · τ
.

In the second step, we use an iterative process that refines |pr|n
and τn in each step in order to determine k. More specifically, we
calculate the number |pr|n of outer partitions and the tightening
factor τn from the previously calculated kn, starting with k0 = 1.
After substituting x and y (cf. Equation (1)) in the above equation
for k, we obtain the recurrence:

kn+1= 3

√
3 · ns

2 · (c_io+ 2 · c_cpu) · τn
·
( c_io

b
+

4 · nr · c_cpu
|pr|n

)
(2)

We start with k0 = 1 and calculate the number of outer partitions,
|pr|0, according to Lemma 3, i.e.,

|pr|n = min(kndλr · kne+ kn −
dλr · kne2

2
− dλr · kne

2
, nr),

and the tightening factor τ0 as the number of inner partitions (cf.
Lemma 3) divided by the number of possible partitions (cf. Propo-
sition 1), i.e.,

τn =
min(kndλs · kne+ kn − dλs·kne2

2
− dλs·kne

2
, ns)

(k2n + kn)/2
.

We repeatedly calculate kn+1 from |pr|n and τn until k converges
to the minimum cost.

Example 8. Consider two relations r and s, each with a time
range |U | = 10M. Relation r has nr = 10M tuples, and the maxi-
mum duration of tuples is lr = 1, 000, i.e., λr = 0.0001. Relation
s has ns = 100M tuples, and the maximum duration of tuples is
ls = 5, 000, i.e., λs = 0.0005. Both relations are stored in main
memory in blocks of 512 bytes. With a tuple size of 35 bytes,
b = 14 tuples fit into a block. The time of a CPU operation is
0.5 nsec (2GHz), and the time to fetch a block from main memory
is 10 nsec, i.e., c_cpu = 0.5 and c_io = 10. Starting with n = 0
and k0 = 1, we get the following values:

n kn |pr|n τn
0 1 1 1
1 64, 633 517, 036 0.00105
2 7, 967 15, 933 0.00126
3 23, 819 95, 270 0.00109
4 13, 761 41, 280 0.00116
5 17, 795 53, 382 0.00112
6 16, 522 49, 563 0.00121
7 16,521 49,560 0.00121
8 16,521 49,560 0.00121

Thus, k converges to k = 16, 521, which is the number of granules
for the OIPJOIN.

Figure 5 illustrates the convergence of k for relations of different
size. The iterative process to find k converges since at each step we
reduce the power by 1

3
. Note that due to the ceiling function and

integer calculus in |pr|n and τn, k may not converge to a single
number, but oscillate between two. In this case the final k is the
average between these two numbers.
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Figure 5: Convergence of k.

6.3 Complexity Analysis
The complexity of the OIPJOIN is composed of three parts:

O(|pr| · APA) partition fetches; O(ns · nr · AFR) false hits;
and O(nz) for retrieving nz result tuples. After substituting
AFR and APA according to Theorem 1 and 2, we get the sum
O(|pr| · τ · k2) + O(ns · nr · 1

k
) + O(nz). The asymptotic k

according to Equation (2) is k = O((ns·nr
|pr|·τ )1/3).

The upper bound complexity occurs with tightening factor τ = 1
(no tightening). In this case we get a low k to keep the cost for
partition accesses low. From τ = 1 we get |pr| = O(k2) (cf.
Section 5.2), i.e.,

k = O((
ns · nr
k2

)1/3)

k5/3 = O((ns · nr)1/3)

k = O((ns · nr)1/5)

Inserting this into the above sum gives O(n
4/5
r · n4/5

s + nz).
The lower bound complexity occurs with tightening factor τ =

O( 1
k

) (maximal tightening). In this case we get a high k, since
the cost for partition accesses is low. From τ = O( 1

k
) we get

|pr| = O(k). Then k is:

k = O((
ns · nr
k · 1

k

)1/3) = O((ns · nr)1/3)

Inserting this into the sum gives O(n
2/3
r · n2/3

s + nz).
To illustrate the complexity, we performed an overlap join be-

tween two relations with 5M tuples each and between two relations
with 10M tuples each. As a reference point, we also compare it
with the lower and upper bound of a sort-merge join (SMJ) of the
same relations. Table 1 shows the runtimes in seconds (as usual,
the time to write result tuples is excluded). We can see that the
runtime increased approximately by a factor of 22/3 · 22/3 = 2.52
for the lower bound and by a factor of 24/5 · 24/5 = 3.03 for the
upper bound. The increase in runtime for the sort-merge join is
2.06 (linear) for the lower bound and 4.00 (quadratic) for the upper
bound.

5M 10M increase
OIPJOIN: LB (τ ≈ 1/k) 46 120 ×2.61

UB (τ = 1) 2, 028 6, 655 ×3.28
SMJ: LB 3.2 6.6 ×2.06

UB 81, 043 324, 175 ×4.00

Table 1: Runtime and Factor of Runtime Increase.

7. EMPIRICAL EVALUATION
This section evaluates the performance of the OIPJOIN and com-

pares it empirically with the other self-adjusting approaches. The
first set of experiments evaluates how k adapts to the cost of CPU



operations and the cost of block IOs. We also verify our cost func-
tion by relating it to the actual runtime. The second set of experi-
ments evaluates the performance of different approaches for a vary-
ing percentage and distribution of long-lived tuples. The ability to
efficiently process data with long-lived tuples, i.e., tuples with a
non-negligible temporal duration, is the most crucial aspect of al-
gorithms and access methods for temporal data. The OIPJOIN out-
performs related approaches by a large margin. The third set of ex-
periments shows that the OIPJOIN scales better than the other ap-
proaches for real world datasets, coming from animal feed industry,
personnel office, and open source software. Between 0.03%−20%
of the tuples are larger than 8% of the data’s time range, which al-
ready leads to significant differences. Finally, we show that the
OIPJOIN scales better than the other approaches for disk resident
data since it considers both CPU and IO costs.

Setup. For the experiments we use a 2 x Intel(R) Xeon(R) CPU
E5-2440 0 @ 2.40GHz machine with 64GB main memory running
CentOS 6.4. All algorithms have been implemented in C. We use
a tuple size of 35 bytes. The block size is 512 bytes for rela-
tions stored in main memory (gives the best performance on our
machine) and 4K bytes (physical disk block size) when stored on
disk. We implemented all algorithms for both disk and main mem-
ory storage. The cost to perform a CPU operation (0.5 nsec) on
our machine is about 20 times faster than fetching a main mem-
ory block (10 nsec). We use synthetic datasets with a time range of
[1, 224] as well as real world datasets (described below).

The OIPJOIN is compared against the following state-of-the-art
approaches. Loose quadtree (lqt): We implemented a partition-
based algorithm that joins every node of the outer tree with all rel-
evant nodes in the inner tree. We use a cell expansion factor p = 1,
which is widely accepted as the best value [18, 23] and gave the
best results in our experiments. We use density based splitting, i.e.,
tuples are propagated down the tree only if a block is full. Together
with block storage, this gave a runtime improvement up to 400%
compared to random access to single tuples. Since in all experi-
ments the loose quadtree outperformed the quadtree, the latter is
not shown in the plots. Relational interval tree (rit): We imple-
mented the RI-Tree Up-Down partition-based algorithm [9]. When
data is stored in main memory, we do not use blocks to store tuples
contiguously. The reason is that even for a clustering index, the
time to fetch 512 bytes that contain only a few matching tuples out-
weighs the advantages of contiguous memory access. Segment tree
(sgt): We implemented the segment tree, where the index is build
on the inner relation and the overlap join is computed by joining
each tuple of the outer relation with the segment tree. Duplicates
are identified during join processing by testing whether the inter-
secting interval starts before the currently joined segment; if so,
it has already been joined in a previous segment. Sort-merge join
(smj): We implemented a sort-merge join that sorts the tuples of the
outer relation by the end point and the tuples of the inner relation
by the start point. The sort order of the inner relation is used to stop
scanning when an inner tuple has a larger start point than the end
point of the outer tuple. The sort order of the outer relation allows
to limit the backtracking to the maximum duration of tuples in the
relations. We implemented the join using blocks. In spite of more
false hits, this increases the performance due to less backtracking.
All runtime experiments include the time to create the indices. For
all approaches, the index creation time is≈ 1% of the total runtime
for data kept in memory and ≈ 5% for disk resident data.

Number of Granules k. The first experiment shows how the
OIPJOIN adapts to c_cpu and c_io. We use synthetic data: an outer

relation with 10M tuples and an inner relation with 100M tuples,
both with tuple durations up to 0.1% of the time range. Figure 6(a)
shows k when varying the ratio c_cpu

c_io from 0.001 to 100. When
c_cpu gets more expensive, k increases so that more partitions are
generated. Figure 6(b) and 6(c) show, respectively, the correspond-
ing AFR (decreasing) and the number of block IOs (increasing).
Figure 6(d) shows the runtime for main memory resident data. It
illustrates that also for data that is stored in main memory the per-
formance can be increased if the costs of memory IOs and the costs
of CPU operations are considered for determining the optimal k.

 4

 8

 12

 16

 20

 0.001  0.01  0.1  1  10  100

k
 [

#
 x

 1
0
0
0
]

CPU cost / IO cost

(a) Derived k.

 0.004

 0.008

 0.012

 0.016

 0.02

 0.001 0.01  0.1  1  10  100

A
F

R
  
[%

]

CPU cost / IO cost

(b) AFR.

 0

 500

 1000

 1500

 2000

 2500

 0.001 0.01  0.1  1  10  100

IO
 [

M
]

CPU cost / IO cost

(c) Block IOs.

 6

 7

 8

 9

 0.001  0.01  0.1  1  10  100

R
u
n
ti

m
e
 [

se
c
 x

 1
0
0
0
]

CPU cost / IO cost

(d) Runtime (Main Memory).

Figure 6: Derived k with Varying c_cpu and c_io.

The next experiment compares the cost function of the OIPJOIN
to the actual runtime. We use the same relations as in the previ-
ous experiment and vary k. Figure 7(a) shows the cost function
for c_cpu = 0.5 nsec and c_io = 10 nsec. Figure 7(b) shows the
actual runtime for the same setting. It is easy to see that both func-
tions have the same shape with the minimum at k = 10, 130.
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Figure 7: Cost Function and Runtime.

Long-Lived Tuples. The next experiment compares the perfor-
mance of the OIPJOIN (oip) with the loose quadtree (lqt), the rela-
tional interval tree (rit), the segment tree (sgt), and the sort-merge
join (smj), by varying the number of long-lived tuples and the max-
imum duration of tuples. The two input relations have 10M tuples
each, with long-lived tuples that have a duration up to 8% and an
average duration of 4% of the relation’s time range. Short-lived tu-
ples have a maximum duration of 0.01% of the time range. Figure 8
shows the runtime and the AFR of the four algorithms. The AFR of
the relational interval tree and segment tree are omitted since they
produce no false hits. The OIPJOIN significantly outperforms the



other approaches since it does not suffer from long-lived tuples and
has a very small AFR (the curve is close to the x-axis). In contrast,
the loose quadtree is very sensitive to long-lived tuples, and the
AFR increases drastically. This yields much higher runtimes due
to excessive comparison operations and the filtering of false hits.
Although the relational interval tree does not produce false hits, its
performance decreases with the increase of long-lived tuples since
a higher number of index nodes need to be joined, which requires a
high number of operations on the indices. The segment tree scales
worse than the relational interval tree, since with longer tuple du-
rations many duplicates need to be fetched and tested. In our ex-
periments, the segment tree outperforms the relational interval tree
only for tuple durations smaller than 0.001%. The performance of
the sort-merge join is highly affected by the longest tuple in the
dataset, but it scales better than the loose quadtree.
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Figure 8: Long-Lived Tuples.

Real World Datasets. We use three real world datasets that
differ in size and data distribution. The main properties of these
datasets are summarized in Table 2. The Incumbent dataset [12]
records the history of employees assigned to projects over a 16 year
period at a granularity of days. The Feed dataset records the his-
tory of measured nutritive values of feeds over a 24 year period at a
granularity of days; a measurement of a nutrient remains valid until
a new measurement for the same nutritive value and feed becomes
available. The Webkit dataset [1] records the history of files of the
svn repository of the Webkit project over a 11 year period at a gran-
ularity of milliseconds. The valid times indicate the periods when
a file did not change. Figure 9 shows the temporal distributions of
the data (i.e., the number of overlapping tuple intervals at each time
point) and the histograms of tuple durations.

Incumbent Feed Webkit
Cardinality 83, 852 3, 697, 957 1, 213, 476

Time Range 5, 895 8, 610 ≈ 239

Min. Duration 1 1 ≈ 210

Max. Duration 574 8, 589 ≈ 239

Avg. Duration 184 432 ≈ 234

Distinct Points 2, 689 5, 584 110, 165

Table 2: Properties of Real World Datasets.

 0

 10

 20

 30

1981-07-01 1989-07-26 1997-08-20

#
 o

f 
tu

p
le

s 
[%

]

Time

 0.001

 0.01

 0.1

 1

 10

 100

 0  20  40  60  80  100

#
 o

f 
tu

p
le

s 
[%

]

Duration [%]

(a) Incumbent Dataset.
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(c) Webkit Dataset.

Figure 9: Tuple Intervals per Time Point and Duration His-
togram of Real World Datasets.

For all three datasets we perform an overlap join, using a subset
of the dataset as the outer relation and the entire dataset as the inner
relation. We use the smaller as the outer relation, since it typically
has fewer partitions, and thus some partitions of the larger relation
are not accessed at all during the join. Figure 10 shows the runtime
and the AFR for the three datasets depending on the size of the
outer relation. The OIPJOIN has the best performance in all three
settings. The other approaches suffer from long-lived tuples, e.g.,
the AFR of the loose quadtree is much larger than the one of the
OIPJOIN, and it does not adapt to the size of the dataset. The AFR
of the sort-merge join is omitted since it reaches 30–50%.

Scalability on Disk. The last experiment shows the scalability
of the algorithms for disk resident data. We vary the number of
inner tuples from 100M to 1500M. The number of outer tuples is
1% of the inner relation. Both relations have tuple durations up to
0.1% of the time range. c_io is 200 times higher than c_cpu. Fig-
ures 11(a) and 11(b) show the number of block IOs and the AFR.
Figure 11(c) shows the runtime behavior on a server with 64GB of
main memory, where a large number of disk blocks is cached by the
operating system. Although the loose quadtree, due to its density-
based splitting strategy, is the best approach in terms of block IOs,
it produces a large number of false hits. The OIPJOIN adapts to
both the cost of block IOs and the cost of false hits, and thus out-
performs all other approaches in terms of runtime. The segment
tree performs worst, in particular in terms of IO (close to the y-
axis), since for each outer tuple, duplicated inner tuples and thus
disk blocks are fetched several times. We run the same experiment
for the three best approaches on a different machine with a simi-
lar CPU but only 4GB main memory, that is, fewer disk blocks are
cached by the operating system. The runtime behavior is shown in
Figure 11(d) and is slower, as expected. The loose quadtree per-
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Figure 10: Runtime and AFR for Real World Datasets.

forms much worse on this machine despite fewer IOs. The reason
is that the OIPJOIN and the sort-merge join benefit from sequential
reads due to sorting. The loose quadtree does not have sequential
blocks on disk, hence the disk seek time deteriorates the perfor-
mance of the loose quadtree.

Summary. The OIPJOIN is the most efficient and robust ap-
proach if the data includes long-lived tuples since it provides a con-
stant clustering guarantee and adapts to both the cost for false hits
and the cost for partition accesses. The loose quadtree and the re-
lational interval tree are only competitive if the dataset contains a
very low number of long-lived tuples. In all other cases, either the
false hits or the navigation in the index structure incur high costs.
For datasets with only very short tuples (or point data), the sort-
merge join is the most efficient approach, but it deteriorates as soon
as the dataset contains a few long-lived tuples.

8. CONCLUSION
In this paper, we have presented the overlap interval partition join

(OIPJOIN) for valid-time relation together with Overlap Interval
Partitioning (OIP). OIP permits overlapping partitions that are
not derived from a recursive hierarchical space division. In contrast
to other approaches, the OIPJOIN does not deteriorate in the pres-
ence of long-lived tuples and adjusts the number of partitions based
on the size of the dataset, the cost of CPU operations, and the cost
of IOs. An in-depth empirical evaluation shows that the OIPJOIN
outperforms state-of-the-art techniques for the overlap join.

Future work points in several directions. First, it is interesting
to investigate how to update OIP incrementally if the relation
changes, since the partitioning allows an expansion on both space
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Figure 11: Varying Number of Tuples of Disk Resident Data.

boundaries by increasing k and maintaining an offset on the in-
dices. For this the effects on k and the treatment of the ending vari-
able “now” must be studied. Second, it is possible to refine the cost
function for, e.g., different buffer replacement strategies. Third, we
have planned to develop statistics to tighten k not only based on the
maximum duration of tuples, but also on the data distribution.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. (Theorem 1) The proof is split into three parts. In Part 1
we compute the SFR of OIP for a duration complete relation rlkd
and a query interval with duration q. In Part 2 we use the result
of Part 1 to show that AFR(OIP) < 1

k
for tuples of duration

l = 1 and query intervals of duration q = 1. From Proposition 2
we have that the AFR(OIP) for q > 1 is smaller. In Part 3 we
show that for tuples up to larger durations, i.e., l > 1 ≤ k · d, the
SFR of OIP and the AFR(OIP) are smaller than for l = 1, thus
AFR(OIP) < 1

k
.

Part 1: Assume l ≤ d. We compute first the sum of false hits
for partitions p that span one granule. Assume a query interval Q
with q = 1 that overlaps p. Let v ≥ 0 be the duration of the
non-overlapping part of p before Q starts. If v ≤ l, we have v2+v

2
false hits in this part of the partition, i.e., all intervals in p that start
and end before Q. If v ≥ l, we have v2+v

2
−
∑v
x=l(v − x) =

vl− l2−l
2

false hits in this part, i.e., all intervals in p up to duration
l that start and end before Q. We sum the false hits of all query
intervals of duration 1 and get

∑l−1
v=0( v

2+v
2

)+
∑d−1
v=l (vl−

l2−l
2

) =
l3−l
6

+ ld2−l2d
2

. The same sum is obtained for false hits in the
non-overlapping part after the query interval Q ends. Thus, for k
granules we get a total of k( l

3−l
3

+ ld2 − l2d) false hits.
Next, we compute the sum of false hits for partitions that span

more than one granule. For l ≤ d, only partitions of duration 2d

contain tuples. Each of these partitions contains l2−l
2

tuples, i.e.,
all tuples up to duration l that start in the first half and end in the
second half of the partition. The total number of matching tuples
for all query intervals of duration 1 is 2

∑l−1
p=1

∑p
x=1(x) = l3−l

3
.

Thus, for k−1 partitions of duration 2d there are 2d possible query
intervals of duration q = 1 that overlap a partition with l2−l

2
tuples.

Subtracting from these tuples the l3−l
3

matches gives a total of (k−
1)(2d l

2−l
2
− l3−l

3
) false hits.

Adding up the false hits for the partitions and dividing the sum
by the number of tuples |rlkd| = kdl − l2−l

2
we get

SFR(OIP) =
2(l2 − 3dl + 3kd2 − 3kd + 3d− 1)

3(2kd− l + 1)
for l ≤ d. (3)

Now assume l > d. Let l be a multiple of d and h = l/d.
Partitions that span one granule are completely full. This yields
a total of k d

3−d
3

false hits, by replacing l in the first case of the
proof with d. Then we have

∑h−1
x=1(k − x) partitions that span

more than one granule, are not longer than l, and are completely
filled. Each of these partitions produces up to d3 − d2 false hits.
The only partitions that are longer than l and contain tuples of du-
ration l = hd have duration d(h + 1), of which (k − h) exist.
Each of these partitions contains d2−d

2
tuples up to size l. The to-

tal number of matching tuples for all query intervals of duration
1 is 2

∑d−1
p=1

∑p
x=1(x) = d3−d

3
, and the total number of matches

where no false hits are possible is d(h−1)(d2−d)
2

. Thus, for k − h
partitions we get (k−h)

(
d(h+1) d

2−d
2
−( d

3−d
3

+ d(h−1)(d2−d)
2

)
)
.

Finally, we divide the sum by the number of tuples |rlkd| = kdl −
l2−l
2

and get

SFR(OIP) =
(d− 1)(6kd− d + 2− 3l)

3(2kd− l + 1)
for l > d. (4)

Part 2: We show that AFR(OIP) < 1
k

for tuples of duration l = 1
and query intervals of duration q = 1. We use the SFR(OIP) of
Part 1 for l ≤ d (since d must be at least 1) and set l = 1 in
Equation (3) to get:

SFR(OIP) =
2(12 − 3d1 + 3kd2 − 3kd + 3d− 1)

3(2kd− 1 + 1)
= d− 1

Next, we set q = 1 and divide by the number of query intervals
kd+ q − 1 = kd+ q − 1 = kd (ref. Definition 5), and get

AFR(OIP) =
SFR(OIP)
kd + q − 1

=
d− 1

kd + 1− 1
=

1

k
−

1

kd
<

1

k
.

Part 3: We show that for l > 1 ≤ kd the SFR(OIP) is smaller
than for l = 1, i.e., smaller d − 1 and thus AFR(OIP) < 1

k
.

Recall that the SFR is independent of the query interval duration q
(ref. Lemma 4). First, we consider 1 < l ≤ d and Equation (3):

d− 1 >
2(l2 − 3dl + 3kd2 − 3kd + 3d− 1)

3(2kd− l + 1)

3(2kd− l + 1)(d− 1) > 2(l
2 − 3dl + 3kd

2 − 3kd + 3d− 1)

−2l2 + (3 + 3d)l− 3d− 1 > 0

By solving the quadratic equation −2l2 + (3 + 3d)l− 3d− 1 = 0
we get l = {1, 3d+1

2
}, since the quadratic term is negative we have

an concave down parabola and thus the inequality we need to show
for 1 < l ≤ d holds for 1 < l < 3d+1

2
.

Second, we consider d < l ≤ kd and Equation (4):

d− 1 >
(d− 1)(6kd− d + 2− 3l)

3(2kd− l + 1)

3(2kd− l + 1)(d− 1) > (d− 1)(6kd− d + 2− 3l)

6kd− 3l + 3 > 6kd− d + 2− 3l

d > −1

Since d ≥ 1, we have that the SFR(OIP) and the AFR(OIP) for
l > 1 is smaller than for l = 1, thus AFR(OIP) < 1

k
.


