
Linking Temporal Records

Pei Li
University of MilanBicocca

pei.li@disco.unimib.it

Xin Luna Dong
AT&T LabsResearch
lunadong@research.att.com

Andrea Maurino
University of MilanBicocca

maurino@disco.unimib.it

Divesh Srivastava
AT&T LabsResearch

divesh@research.att.com

ABSTRACT
Many data sets contain temporal records over a long period of time; each
record is associated with a time stamp and describes some aspects of a real-
world entity at that particular time (e.g., author information in DBLP). In
such cases, we often wish to identify records that describe the same entity
over time and so be able to enable interesting longitudinal data analysis.
However, existing record linkage techniques ignore the temporal informa-
tion and can fall short for temporal data.

This paper studies linking temporal records. First, we apply time decay to
capture the effect of elapsed time on entity value evolution. Second, instead
of comparing each pair of records locally, we propose clustering methods
that consider time order of the records and make global decisions. Experi-
mental results show that our algorithms significantly outperform traditional
linkage methods on various temporal data sets.

1. INTRODUCTION
Record linkage takes a set of records as input and discovers which

records refer to the same real-world entity. It plays an important
role in data integration, data aggregation, and personal information
management, and has been extensively studied in recent years (see
[7, 12] for recent surveys). Existing techniques typically proceed
in two steps: the first step compares similarity between each pair
of records, deciding if they match or do not match; the second step
clusters the records accordingly, with the goal that records in the
same cluster refer to the same real-world entity and records in dif-
ferent clusters refer to different ones.

In practice, a data set may contain temporal records over a long
period of time; each record is associated with a time stamp and de-
scribes some aspects of a real-world entity at that particular time.
In such cases, we often wish to identify records that describe the
same real-world entity over time and so be able to trace the history
of that entity. For example, DBLP1 lists research papers over many
decades; we wish to identify individual authors such that we can
list all publications by each author. Other examples include medi-
cal data that keep patient information over tens of years, customer-
relationship data that contain customer information over years, and

1http://www.informatik.uni-trier.de/∼ley/db/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

Table 1: Records from DBLP.
ID name affiliation co-authors year
r1 Xin Dong R. Polytechnic Institute Wozny 1991
r2 Xin Dong Univ of Washington Halevy, Tatarinov 2004
r3 Xin Dong Univ of Washington Halevy 2005
r4 Xin Luna Dong Univ of Washington Halevy, Yu 2007
r5 Xin Luna Dong AT&T Labs-Research Das Sarma, Halevy 2009
r6 Xin Luna Dong AT&T Labs-Research Naumann 2010
r7 Dong Xin Univ of Illinois Han, Wah 2004
r8 Dong Xin Univ of Illinois Wah 2007
r9 Dong Xin Microsoft Research Wu, Han 2008
r10 Dong Xin Univ of Illinois Ling, He 2009
r11 Dong Xin Microsoft Research Chaudhuri, Ganti 2009
r12 Dong Xin Microsoft Research Ganti 2010

so on; identifying records that refer to the same entity enables in-
teresting longitudinal data analysis over such data [17].

Although linking temporal records is important, to the best of
our knowledge, traditional techniques ignore the temporal infor-
mation in linkage. Thus, they can fall short for such data sets for
two reasons. First, the same real-world entity can evolve over time
(e.g., a person can change her phone number and address) and so
records that describe the same real-world entity at different times
can contain different values; blindly requiring value consistency of
the linked records can thus cause false negatives. Second, it is more
likely to find highly similar entities over a long time period than at
the same time (e.g., having two persons with highly similar names
in the same university over the past 30 years is more likely than
at the same time) and so records that describe different entities at
different times can share common values; blindly matching records
that have similar attribute values can thus cause false positives. We
illustrate the challenges by the following example.

EXAMPLE 1.1. Consider records that describe paper authors
in Table 1; each record is derived from a publication record at
DBLP (we may skip some co-authors for space reason). These
records describe 3 real-world persons: r1 describes E1: Xin Dong,
who was at R. Polytechnic in 1991; r2 − r6 describe E2: Xin
Luna Dong, who moved from Univ of Washington to AT&T Labs;
r7 − r12 describe E3: Dong Xin, who moved from Univ of Illinois
to Microsoft Research.

If we require high similarity on both name and affiliation, we
may split entities E2 and E3, as records for each of them can have
different values for affiliation. If we require only high similarity of
name, we may merge E1 with E2 as they share the same name,
and may even merge all of the three entities. 2

Despite the challenges, temporal information does present addi-
tional evidence for linkage. First, record values typically transition
smoothly. In the motivating example, person E3 moved to a new
affiliation in 2008, but still had similar co-authors from previous

years. Second, record values seldom change erratically. In our
example, r2, r3, r7, r8, r10 are very unlikely to refer to the same
person, as a person rarely moves between two affiliations back and
forth over many years. (However, this can happen around transition
time; for example, entity E3 has a paper with the old affiliation in-
formation after he moved to a new affiliation, as shown by record
r10.) Third, in case we have a fairly complete data set such as
DBLP, records that refer to the same real-world entity often (but
not necessarily) observe continuity; for example, one is less confi-
dent that r1 and r2 − r6 refer to the same person given the big time
gap between them. Exploring such evidence would require a global
view of the records with the time factor in mind.

This paper studies linking temporal records and makes three con-
tributions. First, we apply time decay, which aims to capture the
effect of time elapse on entity value evolution (Section 3). In par-
ticular, we define disagreement decay, with which value difference
over a long time is not necessarily taken as a strong indicator of re-
ferring to different real-world entities; we define agreement decay,
with which the same value with a long time gap is not necessarily
taken as a strong indicator of referring to the same entity. We de-
scribe how we learn decay from labeled data and how we apply it
when computing similarity between records.

Second, instead of comparing each pair of records locally and
then clustering, we describe three temporal clustering methods that
consider records in time order and accumulate evidence over time
to enable global decision making (Section 4). Among them, early
binding makes eager decisions and merges a record with an already
created cluster once it computes a high similarity; late binding in-
stead keeps all evidence and makes decisions at the end; and ad-
justed binding in addition compares a record with clusters that are
created for records with later time stamps.

Finally, we applied our methods on a European patent data set
and two subsets of the DBLP data set. Our experimental results
show that applying decay in traditional methods can already im-
prove linkage results, and applying our clustering methods can ob-
tain results with high precision and recall (Section 5).

This paper focuses on improving quality (precision and recall) of
linking temporal records. We can improve efficiency of linkage by
applying previous techniques such as canopy [13] to create small
blocks of records that are candidates for temporal linkage.

2. OVERVIEW
Consider a domain D of object entities (not known a-priori) where

each entity is described by a set of attributes A = {A1, . . . , An}
and values of an attribute can change over time (e.g., person affili-
ation, business addresses). We distinguish single-valued and multi-
valued attributes, where the difference is whether for an attribute an
entity can have a single or multiple values at any time. Consider a
set R of records, each associated with a time stamp and describing
an entity in D at that particular time. Given a record r ∈ R, we
denote by r.t the time stamp of r and by r.A the value of attribute
A ∈ A from r (we allow null as a value). Our goal is to decide
which records in R refer to the same entity in D.

DEFINITION 2.1 (TEMPORAL RECORD LINKAGE). Let R be
a set of records, each in the form of (x1, . . . , xn, t), where t is the
time stamp associated with the record, and xi, i ∈ [1, n], is the
value of attribute Ai at time t for the referred entity.

The temporal record linkage problem clusters the records in R
such that records in the same cluster refer to the same entity over
time and records in different clusters refer to different entities. 2

EXAMPLE 2.2. Consider the records in Table 1, where each
record describes an author by her name, affiliation, and co-authors

(co-authors is a multi-valued attribute) and is associated with a
time stamp (year). The ideal linkage solution contains 3 clusters:
{r1}, {r2, . . . , r6}, {r7, . . . , r12}. 2

Overview of our solution: Our record-linkage techniques leverage
the temporal information in two ways.

First, when computing record similarity, traditional linkage tech-
niques reward high value similarity and penalize low value similar-
ity. However, as time elapses, values of a particular entity may
evolve; for example, a researcher may change affiliation, email,
and even name over time (see entities E2 and E3 in Example 1.1).
Meanwhile, different entities are more likely to share the same
value(s) with a long time gap; for example, it is more likely that
we observe two persons with the same name within 30 years than
at the same time. We thus define decay (Section 3), with which we
can reduce penalty for value disagreement and reduce reward for
value agreement over a long period. Our experimental results show
that applying decay in similarity computation can already improve
over traditional linkage techniques.

Second, when clustering records according to record similarity,
traditional techniques do not consider time order of the records.
However, time order can often provide important clues. In Ex-
ample 1.1, records r2 − r4 and r5 − r6 may refer to the same
person even though the decayed similarity between r4 and r6 is
low, because the time period of r2 − r4 (year 2004-2007) and that
of r5 − r6 (year 2009-2010) do not overlap; on the other hand,
records r2 − r4 and r7, r8, r10 are very likely to refer to different
persons even though the decayed similarity between r2 and r10 is
high, because the records interleave and their occurrence periods
highly overlap. We propose temporal clustering algorithms (Sec-
tion 4) that consider time order of records and can further improve
linkage results.

3. TIME DECAY
This section introduces time decay, an important concept that

aims at capturing the effect of time elapsing on value evolution.
Section 3.1 defines decay, Section 3.2 describes how we learn de-
cay, and Section 3.3 describes how we apply decay in similarity
computation. Experimental results show that by applying decay in
traditional linkage techniques, we can already improve the results.

3.1 Definition
As time goes by, the value of an entity may evolve; for example,

entity E2 in Example 1.1 was at UW from 2004 to 2007, and moved
to AT&T Labs afterwards. Thus, different values for a single-valued
attribute over a long period of time should not be considered as
strong indicator of referring to different entities. We define dis-
agreement decay to capture this intuition.

DEFINITION 3.1 (DISAGREEMENT DECAY). Let ∆t be a time
distance and A ∈ A be a single-valued attribute. Disagreement
decay of A over time ∆t, denoted by d ̸=(A,∆t), is the probability
that an entity changes its A-value within time ∆t. 2

On the other hand, as time goes by, we are more likely to observe
two entities with the same attribute value; for example, in Exam-
ple 1.1 entity E1 occurred in 1991 and E2 occurred in 2004-2010,
and they share the same name. Thus, the same value over a long
period of time should not be considered as strong indicator of re-
ferring to the same entity. We define agreement decay accordingly.

DEFINITION 3.2 (AGREEMENT DECAY). Let ∆t be a time dis-
tance and A ∈ A be an attribute. The agreement decay of A over
time ∆t, denoted by d=(A,∆t), is the probability that two different
entities share the same A-value within time ∆t. 2

Figure 1: Address decay curves. Figure 2: Learning d ̸=(aff,∆t). Figure 3: Learning d=(name,∆t).

According to the definitions, decay satisfies two properties. First,
decay is in the range of [0,1]; however, d̸=(A, 0) and d=(A, 0) are
not necessarily 0. Second, decay observes monotonicity; that is, for
any ∆t < ∆t′ and any attribute A, d ̸=(A,∆t) ≤ d̸=(A,∆t′) and
d=(A,∆t) ≤ d=(A,∆t′). Whereas our definition of decay ap-
plies to all attributes, for attributes whose values always remain sta-
ble (e.g., birth-date), the disagreement decay is always 0, and for
those whose values change rapidly (e.g., bank-account-balance),
the disagreement decay is always 1.

EXAMPLE 3.3. Figure 1 shows the curves of disagreement de-
cay and agreement decay on attribute address learned from a Eu-
ropean patent data set (described in detail in Section 5).

We observe that (1) the disagreement decay increases from 0 to 1
when time elapses, showing that two records differing in affiliation
over a long time is not a strong indicator of referring to different
entities; (2) the agreement decay is close to 0 everywhere, showing
that in this data set, sharing the same address is a strong indicator
of referring to the same entity even over a long time; (3) even when
∆t = 0, neither the disagreement nor the agreement decay is ex-
actly 0, meaning that even at the same time address match does not
correspond to record match and vice versa. 2

3.2 Learning decay
Decay can be specified by domain experts or learnt from a la-

beled data set, for which we know if two records refer to the same
entity and if two strings represent the same value.2 For simpli-
fication of computation, we make three assumptions. 1. Value
uniqueness: at each time point an entity has a single value for a
single-valued attribute. 2. Closed-world: for each entity described
in the labeled data set, during the time period when records that
describe this entity are present, each of its ever-existing values is
reflected by some record and the change is reflected at the transi-
tion point. 3. Correctness: values in each record reflect the truth in
real world. The data sets in practice often violate the assumptions.
In our learning we remove records that violate the first assumption.
Our experimental results show that the learned decay does lead to
good linkage results even when the latter two assumptions are vio-
lated, as various kinds of violations in the real data often cancel out
each other in affecting the learned curves.

Consider attribute A and time period ∆t. We next describe how
we calculate the decay for A and ∆t according to the labels. Ap-
pendix A describes alternative ways of learning decay, whose re-
sults lead to similar linkage results in our experiments.
Disagreement decay: By definition, disagreement decay for ∆t is
the probability that an entity changes its A-value within time ∆t.
So we need to find the valid period of each A-value of an entity.

Consider an entity E and its records in increasing time order,
denoted by r1, . . . , rn, n ≥ 1. We call a time point t a change point
if r1 is at time t or if at time t there exists a record ri, i ∈ [2, n],
whose A-value is different from ri−1. For each change point t
(associated with a new value), we can compute a life span: if t is
2In case there is no label for whether two strings represent the same value,
we can easily extend our techniques by considering value similarity.

not the last change point of E, we call the life span a full time span
and denote it by [t, tnext), where tnext is the next change point;
otherwise, we call the life span a partial time span and denote it by
[t, tend + δ), where tend is the last time stamp for this value and δ
denotes one time unit. A life span [t, t′) has length t′−t, indicating
that the corresponding value lasts for time t′ − t before any change
in case of a full life span, and that the value lasts at least for time
t′ − t in case of a partial life span. We denote by L̄f the bag of
lengths of full life spans, and by L̄p that for partial life spans.

To learn d̸=(A,∆t), we consider all full life spans and the partial
life spans with at least length ∆t (we do not know for others if the
value will change in time ∆t). We compute the decay as

d ̸=(A,∆t) =
|{l ∈ L̄f |l ≤ ∆t}|

|L̄f |+ |{l ∈ L̄p|l ≥ ∆t}|
. (1)

We give details in Algorithm LEARNDISAGREEDECAY (see Ap-
pendix A). We can prove that the decay it learns satisfies the mono-
tonicity property (proofs of all results are in the appendix).

PROPOSITION 3.4. Let A be an attribute. For any ∆t < ∆t′,
the decay learned by Algorithm LEARNDISAGREEDECAY satisfies
d ̸=(A,∆t) ≤ d ̸=(A,∆t′). 2

EXAMPLE 3.5. Consider learning disagreement decay for af-
filiation from the data in Example 1.1. For illustrative purpose, we
remove record r10 as its affiliation information is incorrect. Take
E2 as an example. As shown in Figure 2, it has two change points:
2004 and 2009. So there are two life spans: [2004, 2009) has
length 5 and is full, and [2009, 2011) has length 2 and is partial.

After considering other entities, we have L̄f = {4, 5} and L̄p =
{1, 2, 3}. Accordingly, d̸=(aff,∆t ∈ [0, 1]) = 0

2+3
= 0, d ̸=(aff,

∆t = 2) = 0
2+2

= 0, d ̸=(aff,∆t = 3) = 0
2+1

= 0, d ̸=(aff,∆t =

4) = 1
2
= 0.5, and d ̸=(aff,∆t ≥ 5) = 2

2
= 1. 2

Agreement decay: By definition, agreement decay for ∆t is the
probability that two different entities share the same value within
time period ∆t. Consider a value v of attribute A. Assume entity
E1 has value v with life span [t1, t2) and E2 has value v with life
span [t3, t4). Without losing generality, we assume t1 ≤ t3. Then,
for any ∆t ≥ max{0, t3 − t2 + δ}, E1 and E2 share the same
value v within a period of ∆t. We call max{0, t3 − t2 + δ} the
span distance for v between E1 and E2.3

For any pair of entities, we find the shared values and compute
the corresponding span distance for each of them. If two entities
never share any value, we use ∞ as the span distance between
them. We denote by L̄ the bag of span distances and compute the
agreement decay as

d=(A,∆t) =
|{l ∈ L̄|l ≤ ∆t}|

|L̄|
. (2)

Algorithm LEARNAGREEDECAY (Appendix A) describes the
details and we next show monotonicity of its results.
3We can easily extend to the case where v has multiple life spans for the
same entity.

PROPOSITION 3.6. Let A be an attribute. For any ∆t < ∆t′,
the decay learned by Algorithm LEARNAGREEDECAY satisfies
d=(A,∆t) ≤ d=(A,∆t′). 2

EXAMPLE 3.7. Consider learning agreement decay for name
from data in Example 1.1. As shown in Figure 3, entities E1 and E2

share value Xin Dong, for which the life span for E1 is [1991, 1992)
and that for E2 is [2004, 2007). Thus, the span distance between
E1 and E2 is 2004 − 1992 + 1 = 13. No other pair of enti-
ties shares the same value; thus, L̄ = {13,∞,∞}. Accordingly,
d=(name,∆t ∈ [0, 12]) = 0

3
= 0, and d=(name,∆t ≥ 13) =

1
3
= 0.33. 2

3.3 Applying decay
We describe how we apply decay in record-similarity computa-

tion. We focus on single-valued attributes and extend our method
for multi-valued attributes in Appendix B.

When computing similarity between two records with a big time
gap, we often wish to reduce the penalty if they have different val-
ues and reduce the reward if they share the same value. Thus, we as-
sign weights to the attributes according to the decay; the lower the
weight, the less important is an attribute in record-similarity com-
putation, so the less penalty for value disagreement or the less re-
ward for value agreement. This weight is decided both by the time
gap and by the similarity between the values (to decide whether to
apply agreement or disagreement decay). We denote by wA(s,∆t)
the weight of attribute A with value similarity s and time difference
∆t. Given records r and r′, we compute their similarity as

sim(r, r′) =

∑
A∈A wA(s(r.A, r′.A), |r.t− r′.t|) · s(r.A, r′.A)∑

A∈A wA(s(r.A, r′.A), |r.t− r′.t|)
.

(3)

Next we describe how we set wA(s,∆t). With probability s, the
two values are the same and we shall use the complement of the
agreement decay; with probability 1− s, they are different and we
shall use the complement of the disagreement decay. Thus, we set
wA(s,∆t) = 1−s ·d=(A,∆t)− (1−s) ·d ̸=(A,∆t). In practice,
we use thresholds θh and θl to indicate high similarity and low
similarity respectively, and set wA(s,∆t) = 1−d=(A,∆t) if s >
θh and wA(s,∆t) = 1 − d ̸=(A,∆t)) if s < θl. Our experiments
show robustness of our techniques with respect to different settings
of the thresholds.

EXAMPLE 3.8. Consider records r2 and r5 in Example 1.1 and
we focus on single-valued attributes name and affiliation. Assume
the name similarity between r2 and r5 is .9 and the affiliation sim-
ilarity is 0. Suppose d=(name,∆t = 5) = .05, d ̸=(aff,∆t =
5) = .9, and θh = .8. Then, the weight for name is 1 − .05 =
.95 and that for affiliation is 1 − .9 = .1. So the similarity is
sim(r1, r2) = .95∗.9+.1∗0

.95+.1
= .81. Note that if we do not apply

decay and assign the same weight to each attribute, the similarity
would become .5∗.9+.5∗0

.5+.5
= .45.

Thus, by applying decay, we are able to merge r2 − r6, despite
the affiliation change of the entity. Note however that we will also
incorrectly merge all records together because each record has a
high decayed similarity with r1. 2

4. TEMPORAL CLUSTERING
As shown in Example 3.8, even when we apply decay in similar-

ity computation, traditional clustering methods do not necessarily
lead to good results as they ignore the time order of the records.
This section proposes three clustering methods, all processing the
records in increasing time order. Early binding (Section 4.1) makes

eager decisions and merges a record with an already created clus-
ter once it computes a high similarity between them. Late binding
(Section 4.2) compares a record with each already created clus-
ter and keeps the probability, and makes clustering decision at the
end. Adjusted binding (Section 4.3) is applied after early binding
or late binding, and improves over them by comparing a record
also with clusters created later and adjusting the clustering results.
Our experimental results show that adjusted binding significantly
outperforms traditional clustering methods on temporal data.

4.1 Early binding
Algorithm: Early binding considers the records in time order; for
each record it eagerly creates its own cluster or merges it with an
already created cluster. In particular, consider record r and already
created clusters C1, . . . , Cn. EARLY (details in Appendix C) pro-
ceeds in three steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].
2. Choose the cluster C with the highest similarity. Merge r

with C if sim(r, C) > θ, where θ is a threshold indicating
high similarity; create a new cluster Cn+1 for r otherwise.

3. Update signature for the cluster with r accordingly.

Cluster signature: When we merge record r with cluster C, we
need to update the signature of C accordingly (step 3). As we
consider r as the latest record of C, we take r’s values as the lat-
est values of C. For the purpose of similarity computation, which
we describe shortly, for each latest value v we wish to keep 1) its
various representations, denoted by R̄(v), and 2) its earliest and
latest time stamps in the current period of occurrence, denoted by
te(v) and tl(v) respectively. The latest occurrence of v is obvi-
ously r.t. We maintain the earliest time stamp and various rep-
resentations recursively as follows. Let v′ be the previous value
of C, and let smax be the highest similarity between v and the
values in R̄(v′). (1) If smax > θh, we consider the two values
as the same and set te(v) = te(v

′) and R̄(v) = R̄(v′) ∪ {v}.
(2) If smax < θl, we consider the two values as different and set
te(v) = r.t and R̄(v) = {v}. (3) Otherwise, we consider that with
probability smax the two values are the same, so we set te(v) =
sim(v, v′)te(v

′) + (1− sim(v, v′))r.t and R̄(v) = R̄(v′)∪ {v}.
Similarity computation: When we compare r with a cluster C
(step 1), for each attribute A, we compare r’s A-value r.A with the
A-value in C’s signature, denoted by C.A. We make two changes
in this process: first, we compare r.A with each value in R̄(C.A)
and take the maximum similarity; second, when we compute the
weight for A, we use te(C.A) for disagreement decay as C.A
starts from time te(C.A), and use tl(C.A) for agreement decay
as tl(C.A) is the last time we see C.A.

EARLY runs in time O(|R|2); the quadratic time is in the number
of records in each block after preprocessing.

EXAMPLE 4.1. Consider applying early binding to records in
Table 1. We start with creating C1 for r1. Then we merge r2
with C1 because of the high record similarity (same name and
high disagreement decay on affiliation with time difference 2004-
1991=13). The new signature of C1 contains address UW from
2004 to 2004. We then create a new cluster C2 for r7, as r7 differs
significantly from C1. Next, we merge r3 and r4 with C1 and merge
r8 and r9 with C2. The signature of C1 then contains address UW
from 2004 to 2007, and the signature of C2 contains address MSR
from 2008 to 2008.

Now consider r10. It has a low similarity with C2 (r10 and r9
have a short time distance but different affiliations), but a high sim-
ilarity with C1 (fairly similar name and high disagreement decay

on affiliation with time difference 2009-2004=5). We thus wrongly
merge r10 with C1. This eager decision further prevents merging
r5 and r6 with C1 and we create C3 for them separately. 2

4.2 Late binding
Instead of making eager decisions and comparing a record with

a cluster based on such eager decisions, late binding keeps all ev-
idence, considers them in record-cluster comparison, and makes a
global decision at the end.

Late binding is facilitated by a bi-partite graph (NR, NC , E),
where each node in NR represents a record, each node in NC rep-
resents a cluster, and each edge (nr, nC) ∈ E is marked with the
probability that record r belongs to cluster C (see Figure 4 for an
example). Late binding clusters the records in two stages: first,
evidence collection creates the bi-partite graph and computes the
weight for each edge; then, decision making removes edges such
that each record belongs to a single cluster.
Evidence collection: Late binding behaves similarly to early bind-
ing at the evidence collection stage, except that it keeps all possi-
bilities rather than making eager decisions. For each record r and
already created clusters C1, . . . , Cn, it proceeds in three steps.

1. Compute the similarity between r and each Ci, i ∈ [1, n].
2. Create a new cluster Cn+1 and assign similarity as follows.

(1) If for each i ∈ [1, n], sim(r, Ci) ≤ θ, we consider that
r is unlikely to belong to any Ci and set sim(r, Cn+1) = θ.
(2) If there exists i ∈ [1, n], such that not only sim(r, Ci) >
θ, but also sim′(r, Ci) > θ, where sim′(r, Ci) is computed
by ignoring decay, we consider that r is very likely to belong
to Ci and set sim(r, Cn+1) = 0. (3) Otherwise, we set
sim(r, Cn+1) = maxi∈[1,n] sim(r, Ci).

3. Normalize the similarities such that they sum up to 1 and
use the results as probabilities of r belonging to each cluster.
Update the signature of each cluster accordingly.

In the last step, we normalize the similarities such that the higher
the similarity, the higher the result probability. Note that in contrast
to early binding, late binding is conservative when the record sim-
ilarity without decay is low (Step 2(3)); this may lead to splitting
records that have different values but refer to the same entity, and
we show later how adjusted binding can benefit from the conserva-
tiveness. Note also that in practice, we may set low similarities to
0 to improve efficiency; we discuss the details in Appendix D.
Cluster signature: For each cluster, the signature consists of all
records that may belong to the cluster along with the probabilities.
For each value of each record, we maintain the earliest time stamp,
the latest time stamp, and similar values, as we do in early binding.
Similarity computation: When we compare r with a cluster C,
we need to consider the probability that a record in C’s signature
belongs to C. Let r1, . . . , rm be the records of C in increasing
time order, and let P (ri), i ∈ [1,m], be the probability that ri
belongs to C. Then, with probability P (rm), record rm is the lat-
est record of C and we should compare r with it; with probability
(1 − P (rm))P (rm−1), record rm−1 is the latest record of C and
we should compare r with it; and so on. Note that the cluster is
valid only when r1, for which we create the cluster, belongs to
the cluster, so we use P (r1) = 1 in the computation (the original
P (r1) is used in the decision-making stage). Formally, the similar-
ity is computed as

sim(r, C) =
m∑
i=1

sim(r, ri)P (ri)Π
m
j=i+1(1− P (ri)). (4)

EXAMPLE 4.2. Consider applying late binding to the records
in Table 1 and let θ = .8. Figure 4 shows a part of the bi-partite

Figure 4: Ex. 4.2. A part
of the bi-partite graph.

Figure 5: Continuity between record
r and cluster C.

graph. At the beginning, we create an edge between r1 and C1

with weight 1. We then compare r2 with C1: the similarity with
decay (.89 > θ) is high but that without decay (.5 < θ) is low.
We thus create a new cluster C2 and set sim(r2, C2) = .89. After
normalization, each edge from r2 has a weight of .5.

Now consider r7. For C1, with probability .5 we shall compare
r7 with r2 (suppose sim(r7, r2) = .4) and with probability 1-.5=.5
we shall compare r7 with r1 (suppose sim(r7, r1) = .8). Thus,
sim(r7, C1) = .8∗.5+.4∗.5 = .6 < θ. For C2, we shall compare
r7 only with r2 and the similarity is .4 < θ. Because of the low
similarities, we create a new cluster C3 and set sim(r7, C3) = .8.
After normalization, the probabilities from r7 to C1, C2 and C3 are
.33, .22 and .45 respectively. 2

Decision making: The second stage makes clustering decisions ac-
cording to the evidence we have collected. We consider only valid
clusterings, where each non-empty cluster contains the record for
which we create the cluster. Let C be a clustering and we denote by
C(r) the cluster to which r belongs in C. We can compute the prob-
ability of C as Πr∈RP (r ∈ C(r)), where P (r ∈ C(r)) denotes the
probability that r belongs to C(r). We wish to choose the valid
clustering with the highest probability. Enumerating all clusterings
and computing the probability for each of them can take exponen-
tial time. We next propose an algorithm that takes only polynomial
time and is guaranteed to find the optimal solution.

1. Select the edge (nr, nC) with the highest weight.
2. Remove other edges connected to nr .
3. If nr is the first selected edge to nC but C is created for

record r′ ̸= r, select the edge (nr′ , nC) and remove all other
edges connected to nr′ (so the result clustering is valid).

4. Go to Step 1 until all edges are either selected or removed.

We describe LATE algorithm in Appendix D and next state the
optimality of the decision-making stage.

PROPOSITION 4.3. LATE algorithm runs in time O(|R|2) and
chooses the clustering with the highest probability among all pos-
sible valid clusterings. 2

EXAMPLE 4.4. Continue with Example 4.2. After evidence col-
lection, we created 5 clusters and the weight of each record-cluster
pair is shown in Table 2. Weights of selected edges are in bold.

We first select edge (nr1 , nC1) with weight 1. We then choose
(nr2 , nC2) with weight .5 (there is a tie between C1 and C2; even
if we choose C1 at the beginning, we will change back to C2 when
we select edge (nr3 , nC2)), and (nr8 , nC3) with weight .48. As C3

is created for record r7, we also select edge (nr7 , nC3) and remove
other edges from r7. We choose edges for the rest of the records
similarly and the final result contains 5 clusters: {r1}, {r2, . . . , r6},
{r7, r8}, {r9, r11, r12}, {r10}.

Note that despite the error made for r10, we are still able to
correctly merge r5 and r6 with C2 because we make the decision
at the end. Note however that we did not merge r9, r11 and r12
with C3, because of the conservativeness of late binding. 2

Table 2: Example 4.4. Weights on the bipartite graph.
r1 r2 r7 r3 r8 r4 r9 r10 r11 r5 r12 r6

C1 1 .5 .33 .37 .27 .38 .16 .13 .18 .24 .12 .22
C2 0 .5 .22 .4 .25 .4 .16 .12 .17 .27 .1 .24
C3 0 0 .45 .23 .48 .22 .24 .26 .2 .17 .23 .18
C4 0 0 0 0 0 0 .44 .19 .29 .16 .33 .18
C5 0 0 0 0 0 0 0 .3 .16 .16 .22 .18

4.3 Adjusted binding
Neither early binding nor late binding compares a record with

a cluster created later. However, evidence from later records may
fix early errors; in Example 1.1, after observing r11 and r12, we
are more confident that r7 − r12 refer to the same entity but record
r10 has out-of-date affiliation information. Adjusted binding allows
comparison between a record and clusters that are created later.

Adjusted binding can start with the results from either early or
late binding and iteratively adjust the clustering (deterministic ad-
justing), or start with the bi-partite graph created from evidence
collection of late binding, and iteratively adjust the probabilities
(probabilistic adjusting). We next describe the deterministic algo-
rithm and Appendix E describes the probabilistic one.

Algorithm: Deterministic adjusting proceeds in EM-style.

1. Initialization: Set the initial assignment as the result of early
or late binding.

2. Estimation (E-step): Compute the similarity of each record-
cluster pair and normalize the similarities as in late binding.

3. Maximization (M-step): Choose the clustering with the max-
imum probability, as in late binding.

4. Termination: Repeat E-step and M-step until the results con-
verge or oscillate.

Similarity computation: The E-step compares a record r with a
cluster C, whose signature may contain records that occur later
than r. Our similarity computation takes advantage of this com-
plete view of value evolution as follows.

First, we consider consistency of the records, including consis-
tency in evolution of the values, in occurrence frequency, and so
on. We describe how we compute value consistency next and dis-
cuss occurrence frequency in Appendix E. Consider the value con-
sistency between r and C = {r1, . . . , rm} (if r ∈ C, we re-
move r from C), denoted by cons(r, C) ∈ [0, 1]. Assume the
records of C are in time order and rk.t < r.t < rk+1.t.4 In-
serting r into C can affect the consistency of C in two ways: 1)
r may be inconsistent with rk, so the similarity between r and
the sub-cluster C1 = {r1, . . . , rk} is low; 2) rk+1 may be incon-
sistent with r, so the similarity between rk+1 and the sub-cluster
C2 = {r1, . . . , rk, r} is low. We take the minimum as cons(r, C):

cons(r, C) = min(sim(r, C1), sim(rk+1, C2)). (5)

Second, we consider continuity of r and C’s other records in
time, denoted by cont(r, C) ∈ [0, 1]. Consider the five cases
in Figure 5 and assume the same consistency between r and C.
Record r is farther away in time from C’s records in cases 1 and 5
than in cases 2-4, so it is less likely to belong to C in cases 1 and
5. Let C.early denote the earliest time stamp of records in C and
C.late denote the latest one. We compute the continuity as follows.

cont(r, C) = e−λy ; (6)

y =
|r.t− C.early|+ α

C.late− C.early + α
. (7)

4We can extend our techniques to the case when r has the same time stamp
as some record in C.

Here, λ > 0 is a parameter that controls the level of continuity
we require; α > 0 is a small number such that when the denom-
inator (resp., numerator) is 0, the numerator (resp., denominator)
can still affect the result.5 Under this definition, the higher the time
difference between r and the earliest record in C compared with
the length of C, the lower the continuity. In Figure 5, cont(r, C) is
close to 0 in cases 1, 5, close to 1 in cases 2, 3, and close to e−λ in
case 4. Note that we favor time points close to C.early more than
those close to C.late; thus, when we shall merge two clusters that
are close in time, we will gradually move the latest record of the
early cluster into the late cluster, as it has a higher continuity with
the late cluster.

Finally, the similarity of r and C considers both consistency and
continuity, and is computed by

sim(r, C) = cons(r, C) · cont(r, C). (8)

Recall that late binding is conservative for records whose simi-
larity without decay is low and may split them. Adjusted binding
re-examines them and merges them only when they have both high
consistency and high continuity, and thus avoids aggressive merg-
ing of records with long time gap.

We describe the detailed algorithm, ADJUST, in Appendix E.
Our experiments show that ADJUST does not necessarily converge,
but the quality measures of the results at the oscillating rounds are
very similar.

EXAMPLE 4.5. Consider r10 and C4 in the results of Exam-
ple 4.4. For value consistency, inserting r10 into C4 results in
{r9, . . . , r12}. Assume sim(r10, {r9}) = sim(r11, {r9, r10}) =
.6. Then, cons(r10, C4) = .6. For continuity, if we set λ = 2 and

α = 1, we obtain l(r10, C4) = e−2· 1+1
2+1 = 0.26. Thus, the simi-

larity is .26 ∗ .6 = .16. On the other hand, the similarity between
r10 and C5 is 1 · e−2· 1

1 = .14. We thus merge r10 with C4.
Similarly, we then merge r8 with C4 and in turn r7 with C4,

leading to the correct result. Note that we do not merge r1 with C2,
because of the long time gap and thus a low continuity. 2

5. EXPERIMENTAL EVALUATION
This section describes experimental results on two real data sets.

We show that (1) our technique significantly improves over tradi-
tional methods on various data sets; (2) the two key components of
our strategy, namely, decay and temporal clustering, are both im-
portant for obtaining good results; (3) our technique is robust with
respect to various data sets and reasonable parameter settings; (4)
our techniques are efficient and scalable (see Appendix F).

5.1 Experiment settings
Data and golden standard: We experimented on two real-world
data sets: a benchmark of European patent data set6 and the DBLP
data set. From the patent data we extracted Inventor records with
attributes name and address; the time stamp of each record is
the patent filing date. The benchmark involves 359 inventors from
French patents, where different inventors rarely share similar names;
we thus increased the hardness by deriving a data set with only first
name and last name initial for each inventor. We call the original
data set the full set and the derived one the partial set.

5In practice, we set α to one time unit, and set λ = − ln cons where cons
is the minimum consistency we require for merging a record with a cluster.
When we shall merge two clusters C1 and C2 where C1.late = C2.early,
with such λ the latest record r1 of C1 has continuity cons with C1 and
continuity 1 with C2, so can be merged with C2 if cons(r1, C2) > cons.
6http://www.esf-ape-inv.eu/

Table 3: Statistics of the experimental data sets.
#Records #Entities Years

Patent (full or partial) 1871 359 1978-2003
DBLP-XD 72 8 1991-2010
DBLP-WW 738 18+potpourri 1992-2011

From the DBLP data we considered two subsets: the XD data set
contains 72 records for authors named Xin Dong, Luna Dong, Xin
Luna Dong, or Dong Xin, for which we manually identified 8 au-
thors; the WW data set contains 738 records for authors named Wei
Wang, for 302 of which DBLP has manually identified 18 authors
(the rest is left in a potpourri). For each subset we extracted Au-
thor records with attributes name, affiliation, and co-author (we
extracted affiliation information from the papers) on 2/1/2011; the
time stamp of each record is the paper publication year. Table 3
shows statistics of the data sets.
Implementation: We learned decay from both Patent data sets.
The decay we learned for the address attribute is shown in Fig-
ure 1; for name both agreement and disagreement decay are close
to 0 on both data sets. We observed similar linkage results when
we learned the decays from half of the data and applied them on
the other half. We also applied the decay learned from the partial
data set on linking DBLP records.

We pre-partitioned the records by the initial of the last name, and
implemented the following methods on each partition.

• Baseline methods include PARTITION, CENTER, and MERGE
[10]. They all compute pairwise record similarity but apply
different clustering strategies. Appendix F.1 gives the details.

• Decayed baseline methods include DECAYEDPARTITION, DE-
CAYEDCENTER, and DECAYEDMERGE, each modifying the
corresponding baseline method by applying decays in record-
similarity computation.

• Temporal clustering methods include NODECAYADJUST, ap-
plying ADJUST without using decay.

• Full methods include EARLY, LATE, and ADJUST, each ap-
plying both decay and the corresponding clustering algorithm.

We present details of similarity computation in Appendix F.1.
By default, when we computed the record similarity without ap-
plying decay, we used weight .5 for both name and address (or
affiliation). No matter whether we applied decay, we used weight
.3 for co-author. We applied threshold .8 for deciding if a similar-
ity is high in various contexts. In addition, we set θh = .8, θl =
.6, λ = .5, α = 1 in our methods. We vary these parameters and
present some results in Appendix F.2 to demonstrate robustness.

We implemented the algorithms in Java. We used a WindowsXP
machine with 2.66 GHz Intel CPU and 1 GB of RAM.
Measure: We compared pairwise linking decisions with the golden
standard and measured the quality of the results by precision (P),
recall (R), and F-measure (F). We denote the set of false posi-
tive pairs by FP , the set of false negative pairs by FN , and the
set of true positive pairs by TP . Then, P = |TP |

|TP |+|FP | , R =
|TP |

|TP |+|FN| , F = 2PR
P+R

.

5.2 Results on Patent data
Figure 6 compares ADJUST with the baseline methods. ADJUST

obtains slightly lower precision (but still above .9) but much higher
recall (above .8) on both data sets; it improves the F-measure over
baseline methods by 15%-27% on the full data set, and by 11%-
22% on the partial data set. The full data set is simpler as very
few inventors share similar full names; as a result, ADJUST obtains
higher precision and recall on this data set. The slightly lower recall
on the partial data set is because early false matching can prevent

Figure 6: Results on the patent data set.

Figure 7: Contribution of dif-
ferent components.

Figure 8: Different clustering
methods on patent partial data.

correct later matching. We next give a detailed comparison on the
partial data set, which is harder. Among the baseline methods,
PARTITION obtains the best results on the Patent data set and we
next show results only on it. Results for the other two baseline
methods follow the same pattern.

Different components: Figure 7 shows the contribution of ap-
plying decay and applying temporal clustering. We observe that
DECAYEDPARTITION and NODECAYADJUST both improve over
PARTITION, and ADJUST obtains the best result. Applying decay
on baseline methods increases the recall a lot, but it is at the price
of a big drop in precision. Temporal clustering, on the other hand,
considers the time information in clustering and in continuity com-
putation, so it increases the recall quite a bit without reducing the
precision much. Finally, we observe that applying agreement de-
cay does not change the results much, since the agreement decays
of both attributes are close to 0.

Different clustering methods: Figure 8 compares early, late, and
adjusted binding. We observe that they all improve the recall over
PARTITION, and reduce the precision only slightly. Between EARLY
and LATE, EARLY has a lower precision as it makes local deci-
sions, while LATE has a lower recall as it is conservative in merging
records with similar names but different addresses (high decayed
similarity but low non-decayed similarity). ADJUST significantly
improves the recall over both methods by comparing early records
with clusters formed later, without sacrificing the precision much.

5.3 Results on DBLP data
XD data set: The golden standard contains 8 clusters: the Xin clus-
ter has 36 records in years 2003-2010, including name Dong Xin
and 2 affiliations (UIUC, MSR); the Dong cluster has 29 records
in years 2003-2010, including 3 names (Xin Dong, Luna Dong,
Xin Luna Dong) and 3 affiliations (UW, Google, AT&T); the rest of
them each has 1 or 2 records, including 1 name Xin Dong and 1 af-
filiation. ADJUST results in 9 clusters and makes only one mistake:
it splits the Xin records in 2009 with affiliation UIUC from the rest
of Xin records. This is because Xin moved to MSR in 2008, so
ADJUST considers the two affiliations as conflicting. We highlight
that (1) ADJUST fixes an error in DBLP: it (correctly) separates the
records with affiliation UNL from the Dong cluster; and (2) AD-
JUST is able to distinguish the various people, even though their
names are exactly the same or very similar (the similarity between
Xin Dong and Dong Xin is set to .8).

Figure 9: Results on XD set. Figure 10: Results on WW set.

Figure 9 shows the results of various methods on this data set.
ADJUST improves over baseline methods by 37%-43%. Other ob-
servations are similar to those on the Patent data set, except that ap-
plying decay to some baseline methods (PARTITION and MERGE)
can considerably reduce the precision and result in a low F-measure,
as this data set is small and extremely difficult.

WW data set: We first report results on the 302 records for which
DBLP has identified 18 clusters, among which (1) 3 involve 2 af-
filiations, 2 involve 3 affiliations, and 1 involves 4 affiliations, so
in total 10 affiliation transitions; (2) two authors share the same
affiliation Fudan; (3) the largest cluster contains 92 records, the
smallest one contains 1 record, and 6 clusters contain more than 10
records. ADJUST obtains both high precision (.98) and high recall
(.97). We highlight that (1) ADJUST is able to distinguish the dif-
ferent authors in most cases; (2) among the 10 transitions, ADJUST
identifies 5 of them. ADJUST makes four types of mistakes: (1)
it merges the two Fudan clusters, as one of them contains a single
record with year in the middle of the time period of the other clus-
ter; (2) it merges the big Fudan cluster with another record, whose
affiliation appears different from the rest in its own cluster, and time
stamp is one year before the earliest record in the big Fudan cluster,
so makes a hard case for the adjusting step; (3) it does not identify
one of the transitions for the same reason as in the XD data set; and
(4) it does not identify the other 4 transitions because there are very
few records for one of the affiliations and so not enough evidence
for merging. Finally, Figure 10 shows that ADJUST is significantly
better than all other methods.

In the complete DBLP WW data set, 124 other WW records are
merged with these 18 clusters and we manually verified the cor-
rectness. Among them, 63 are correctly merged, fixing errors from
DBLP; 26 are wrongly merged but can be correctly separated if
we have department information for affiliation; and 35 are wrongly
merged mainly because of high similarity of affiliations (e.g., many
records with “technology” in affiliation are wrongly merged be-
cause the IDF of “technology” is not so low on this small data set).
If we count these additional records, we are still able to obtain a
precision of .94 and a recall of .94.

6. RELATED WORK AND CONCLUSIONS
Related work: We have compared our techniques with traditional
record-linkage techniques in Section 2 and in experiments; Ap-
pendix G gives more details. We next compare with related works
regarding temporal information.

A suite of temporal data models [15] and temporal knowledge
discovery paradigms [16] have been proposed in the past; however,
we are not aware of any work focusing on linking temporal records.
Behavior based linkage [20] leverages periodical behavior patterns
of each entity in linking pairs of records and learns such patterns
from transaction logs. Their behavior pattern is different from the
decay in our techniques in that decay learns the probability of value
changes over time for all entities. In addition, we do not require a
fixed and repeated value change pattern of particular entities and
apply decay in a global fashion (rather than just between pairs of
records) such that we can handle value evolution over time.

The notion of decay has been proposed in the context of data
warehouses and streaming data recently [3, 4]. They use decay to
reduce the effect of older tuples on data analysis. Among them,
backward decay [3] measures time difference backward from the
latest time and forward decay [4] measures time difference forward
from a fixed landmark. Their decay function is either binary or a
fixed (exponential or polynomial) function. We differ in that 1) we
consider time difference between two records rather than from a
fixed point, and 2) we learn the decay curves purely from the data
rather than using a fixed function.

Conclusions and future work: This paper studied linking records
with temporal information. We apply decay in record-similarity
computation and consider the time order of records in clustering;
thus, our linkage technique is tolerant of entity evolution over time
and can glean evidence globally for decision making. Future work
includes combining temporal information with other dimensions of
information such as spatial information to achieve better results,
and considering erroneous data especially erroneous time stamps.

7. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy

duplicates in data warehouses. In VLDB, pages 586–597, 2002.
[2] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting

relationships for object consolidation. In IQIS, pages 47–58, 2005.
[3] E. Cohen and M. Strauss. Maintaining time-decaying stream

aggregates. In PODS, pages 223–233, 2003.
[4] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. Forward

decay: A practical time decay model for streaming systems. ICDE,
pages 138–149, 2009.

[5] D. Dey. Entity matching in heterogeneous databases: A logistic
regression approach. Decis. Support Syst., 44:740–747, 2008.

[6] P. Domingos. Multi-relational record linkage. In Proceedings of the
KDD Workshop on Multi-Relational Data Mining, pages 31–48.

[7] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng.,
19(1):1–16, 2007.

[8] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of
the American Statistical Association, 64(328):1183–1210, 1969.

[9] G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph clustering and
minimum cut trees. Internet Mathematics, 1:385–408, 2004.

[10] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller. Framework
for evaluating clustering algorithms in duplicate detection. PVLDB,
pages 1282–1293, 2009.

[11] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty: Data
cleansing and the merge/purge problem. Data Mining and
Knowledge Discovery, 2:9–37, 1998.

[12] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, pages 802–803,
2006.

[13] A. K. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
Proc. of SIGKDD, pages 169–178, 2000.

[14] B. W. On, N. Koudas, D. Lee, and D. Srivastava. Group linkage. In
ICDE, pages 496–505, 2007.

[15] G. Ozsoyoglu and R. Snodgrass. Temporal and real-time databases: a
survey. TKDE, 7:513–532, 1995.

[16] J. F. Roddick and M. Spiliopoulou. A survey of temporal knowledge
discovery paradigms and methods. TKDE, 14:750–767, 2002.

[17] G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. Benczúr,
S. Kirkpatrick, P. Rigaux, and M. Williamson. Longitudinal analytics
on web archive data: It’s about time! In CIDR, pages 199–202, 2011.

[18] D. T. Wijaya, S. Bressan, J. Joxan, and D. T. Wijaya. Ricochet: A
family of unconstrained algorithms for graph clustering. In DASFAA,
pages 153–167, 2009.

[19] W. E. Winkler. Methods for record linkage and bayesian networks.
Technical report, Series RRS2002/05, U.S. Bureau of the Census,
2002.

[20] M. Yakout, A. K. Elmagarmid, H. Elmeleegy, M. Ouzzani, and
A. Qi. Behavior based record linkage. PVLDB, 3:439–448, 2010.

APPENDIX
A. DETAILS OF LEARNING DECAY

We describe Algorithms LEARNDISAGREEDECAY and LEAR-
NAGREEDECAY and show the monotonicity of their results.

Algorithm 1 LEARNDISAGREEDECAY(C, A)
Input: C Clusters of records in the sample data set, where records

in the same cluster refer to the same entity and records in dif-
ferent clusters refer to different entities.
A Attribute for learning decay.

Output: Disagreement decay d ̸=(∆t, A).
1: L̄f = ϕ; L̄p = ϕ;
2: for each C ∈ C do
3: sort records in C in increasing time order to r1, . . . , r|C|;
4: // Find life spans
5: start = 1;
6: while start ≤ |C| do
7: end = start+ 1;
8: while rstart.A = rend.A and end ≤ |C| do
9: end++;

10: end while
11: if end > |C| then
12: insert r|C|.t− rstart.t+ δ into L̄p; // partial life span
13: else
14: insert rend.t− rstart.t into L̄f ; // full life span
15: end if
16: start = end;
17: end while
18: end for
19: // Learn decay
20: for ∆t = 1, . . . ,maxl∈L̄f∪L̄p

{l} do

21: d̸=(A,∆t) =
|{l∈L̄f |l≤∆t}|

|L̄f |+|{l∈L̄p|l≥∆t}|
22: end for

PROOF MONOTONICITY. In LEARNDISAGREEDECAY, as ∆t
increases, |{l ∈ L̄f |l ≤ ∆t}| increases while |{l ∈ L̄p|l ≥ ∆t}|
decreases; thus, |{l∈L̄f |l≤∆t}|

|L̄f |+|{l∈L̄p|l≥∆t}| increases.

In LEARNAGREEDECAY, as ∆t increases, |{l ∈ L̄|l ≤ ∆t}|
increases; thus, |{l∈L̄|l≤∆t}|

|L̄| increases.

We next describe two alternatives of decay learning, namely,
single-count decay and probabilistic decay for disagreement decay
(similar for agreement decay). Experimental results show that they
learn similar (but more or less smooth) decay curves as LEARNDIS-
AGREEDECAY and LEARNAGREEDECAY.

Single-count decay considers an entity at most once and learns the
disagreement decay d ̸=(A,∆t) as the fraction of entities that have
changed their A-value within time ∆t. In particular, if an entity E
has full life spans, we choose the shortest one and insert its length
l to L̄f , indicating that E has changed its A-value in time l; other-
wise, we consider E’s partial life span and insert its length l to L̄p,
indicating that E has not changed its A-value in time l, but we do
not know if it will change its A-value in any longer time. We learn
disagreement decay using Eq.(1).

Probabilistic decay removes the timeliness assumption; that is, each
value change is reflected by a record at the change point. In partic-
ular, consider a full life span [t, tnext) and we assume the last time
we see the same value is tend, t ≤ tend ≤ tnext. We assume the
value can change at any time from tend to tnext with equal prob-
ability 1

tnext−tend+1
. Thus, for each t′ ∈ [tend, tnext], we insert

length t′−t into L̄f and annotate it with probability 1
tnext−tend+1

.
If we denote by p(l) the probability for a particular length l in L̄f ,
we compute the disagreement decay as

d̸=(A,∆t) =

∑
l∈L̄f ,l≤∆t p(l)∑

l∈L̄f
p(l) + |{l ∈ L̄p|l ≥ ∆t}|

. (9)

Algorithm 2 LEARNAGREEDECAY(C, A)
Input: C Clusters of records in the sample data set, where records

in the same cluster refer to the same entity and records in dif-
ferent clusters refer to different entities.
A An attribute for decay learning.

Output: Agreement decay d=(∆t, A).
1: //Find life spans
2: for each C ∈ C do
3: sort records in C in increasing time order to r1, . . . , r|C|;
4: start = 1;
5: while start ≤ |C| do
6: end = start+ 1;
7: while rstart.A = rend.A and end ≤ |C| do
8: end++;
9: end while

10: if end > |C| then
11: rstart.tnext = r|C|−1.t+ δ; // partial life span
12: else
13: rstart.tnext = rend.t; // full life span
14: end if
15: start = end;
16: end while
17: end for
18: //Learn agreement decay
19: L̄ = ϕ
20: for each C,C′ ∈ C do
21: same = false;
22: for each r ∈ C s.t. r.tnext ̸= null do
23: for each r′ ∈ C′ s.t. r.tnext ̸= null do
24: if r.A = r′.A then
25: same = true;
26: if r.t ≤ r′.t then
27: insert max{0, r′.t− r.tnext + 1} into L̄;
28: else
29: insert max{0, r.t− r′.tnext + 1} into L̄;
30: end if
31: end if
32: end for
33: end for
34: if !same then
35: insert ∞ into L̄;
36: end if
37: end for
38: for ∆t = 1, . . . ,maxl∈L̄{l} do
39: d=(A,∆t) = |{l∈L̄|l≤∆t}|

|L̄|
40: end for

B. LEARNING AND APPLYING DECAY FOR
MULTIVALUED ATTRIBUTES

In this section we consider multi-valued attributes such as co-
authors. We start with describing record-similarity computation
with such attributes, and then describe how we learn and apply de-
cay for such attributes.

Multi-valued attributes differ from single-valued attributes in that
the same entity can have multiple values for such attributes even
at the same time; therefore, (1) having different values for such at-
tributes does not indicate record un-match; and (2) sharing the same
value for such attributes is additional evidence for record match.

Consider a multi-valued attribute A. Consider records r and r′;
r.A and r′.A each is a set of values. Then, the similarity of r.A and
r′.A, denoted by s(r.A, r′.A), is computed by a variant of Jaccard
distance between the two sets.

s(r.A, r′.A) =

∑
v∈r.A,v′∈r′.A,s(v,v′)>θh

s(v, v′)

min{|r.A|, |r′.A|}
. (10)

If the relationship between the entities and the A-values are one-
to-many, we add the attribute similarity (with a certain weight) to
the record similarity between r and r′. In particular, let sim′(r, r′)
be the similarity between r and r′ when we consider all attributes
and wA be the weight for attribute A, then,

sim′(r, r′) = min{1, sim(r, r′) +
∑

multi−valued A

wAs(r.A, r′.A)}.

(11)

On the other hand, if the relationship between the entities and the
A-values are many-to-many, we apply Eq.(11) only when sim(r, r′)
> θs, where θs is a threshold for high similarity on values of single-
valued attributes.

Now consider decay on such multi-valued attributes. First, we do
not learn disagreement decay on multi-valued attributes and learn
agreement decay in the same way as for single-valued attributes.
Second, we apply agreement decay when we compute the similar-
ity between values of a multi-valued attribute, so if the time gap
between two similar values is large, we discount the similarity. In
particular, we revise Eq.(10) as follows.

s(r.A, r′.A)

=

∑
v∈r.A,v′∈r′.A,s(v,v′)>θh

(1− d=(A, |r.t− r′.t|))s(v, v′)
min{|r.A|, |r′.A|}

.(12)

EXAMPLE B.1. Consider records r2 and r5 and multi-valued
attribute co-authors (many-to-many relationship) in Example 1.1.
Let θh = .8 and wco = .3. Record r2 and r5 share one co-author
with string similarity 1. Suppose d=(co,∆t = 5) = .05. Then,
s(r2.co, r5.co) = (1−.05)∗1

min{2,2} = .475. Recall from Example 3.8
that sim(r2, r5) = .81 > θh; therefore, the overall similarity is
sim′(r2, r5) = min{1, .81 + .475 ∗ .3} = .95. 2

C. DETAILS OF EARLY BINDING
We describe algorithm EARLY in Algorithm 3.

D. DETAILS OF LATE BINDING
We describe algorithm LATE in Algorithm 4.
In Line 24 of the algorithm, we remove edges with low similarity

scores for each record before we normalize the edge weights. We
next describe several edge-deletion strategies. Our experimental
results (Appendix F.2) show that they obtain similar results, while
they all improve over not deleting edges in both efficiency and ac-
curacy of the results.

• Thresholding removes all edges whose associated similarity
scores are less or equal to a threshold θ.

• Top-K keeps top-k edges whose associated similarity scores
are above threshold θ.

Algorithm 3 EARLY(R)
Input: R records in increasing time order
Output: C clustering of records in R
1: for each record r ∈ R do
2: for each C ∈ C do
3: compute record-cluster similarity sim(r, C);
4: end for
5: if maxC∈C sim(r, C) ≥ θ then
6: C = ArgmaxC∈Csim(r, C);
7: insert r into C;
8: update signature of C;
9: else

10: insert cluster {r} into C;
11: end if
12: end for
13: return C;

• Gap orders the edges in descending order of the associated
similarity scores to e1, e2, . . . , en, and selects the edges in de-
creasing order until reaching an edge ei where (1) the scores
for ei and ei+1 have a gap larger than a given threshold θgap,
or (2) the score for ei+1 is less than threshold θ.

PROOF PROPOSITION 4.3. Our evidence collection step guar-
antees that if Cr is created for record r, then the edge (Nr, NCr)
has the highest weight among edges from Nr . Thus, the deci-
sion making step chooses the edge with the highest weight for each
record and obtains the optimal solution.

E. DETAILS OF ADJUST BINDING
We describe Algorithm ADJUST in Algorithm 5. Next, we de-

scribe frequency consistency and probabilistic adjusting.

Frequency consistency: Consider a cluster C. The occurrence
frequency of C, denoted by freq(C), is computed by

freq(C) =
Clate − Cearly

|C|
. (13)

Let C′ be the cluster after inserting record r into C. The fre-
quency consistency between r and C, denoted by consf (r, C) is
computed by

consf (r, C) = 1−
|freq(C)− freq(C′)|

max{freq(C), freq(C′)}
. (14)

In practise, we can also apply a window of size n ≤ |C|, so that
occurrence frequency is only considered within n records.

Probabilistic adjusting: Probabilistic adjusted binding proceeds
in three steps.

• The algorithm starts with the bi-partite graph created from
evidence collection in late binding.

• It iteratively adjusts the weight of each edge and keeps all
edges, until the weights converge or oscillate. In each iter-
ation, it (1) re-computes the similarity between each record
and each cluster, (2) normalizes the weights of edges from
the same record node, and (3) re-computes the signature of
each cluster.

• It selects the possible world with the highest probability as in
late binding.

In the second step, when we compute the similarity between a
record and a cluster, we compute consistency cons(r, C) and con-
tinuity cont(r, C) similarly as in deterministic adjusted binding,

Algorithm 4 LATE(R)
Input: R records in increasing time order
Output: C clustering of records in R
1: Initialize a bi-partite graph (NR, NC , E) where NR = NC =

E = ∅;
2: //Evidence collection
3: for each record r ∈ R do
4: insert node nr into NR;
5: for each nC ∈ NC do
6: compute decayed record-cluster similarity sim(r, C);
7: end for
8: if maxnC∈NC sim(r, C) ≤ θ then
9: insert node nCr into NC ;

10: insert edge (nr, nCr) with weight θ into E;
11: else
12: newCluster = true;
13: for each nC ∈ NC , where sim(r, C) > θ do
14: compute no decayed similarity sim′(r, C);
15: if sim′(r, C) > θ then
16: newCluster = false; break;
17: end if
18: end for
19: if newCluster then
20: insert node nCr into NC ;
21: insert edge (nr, nCr) with weight

maxnC∈NC ,sim′(r,C)>θ(sim(r, C)) into E;
22: end if
23: end if
24: delete edges with low weights;
25: normalize weights for all edges from nr;
26: end for
27: // Decision making
28: while |E| > |NR| do
29: select edge (nr, nC) with maximal edge weight;
30: remove edges (nr, nC′) for all C′ ̸= C;
31: if cluster C is created for record r′ ̸= r then
32: select edge (nr′ , nC);
33: remove edges (nr′ , nC′) for all C′ ̸= C;
34: end if
35: end while
36: return C;

except that we need to consider the probability of a record belong-
ing to a cluster. For value consistency, we consider probability in
the same way as in late binding. For continuity, we compute the
probabilistic earliest and latest time stamps of a cluster as follows.
Suppose cluster C is connected to m records r1, . . . , rm where
r1.t ≤ r2.t ≤ · · · ≤ rm.t, each with probability pi, i ∈ [1,m].
We compute Cearly and Clate as follows.

Cearly =
m∑
i=1

ri.t · (piΠi−1
k=1(1− pk)); (15)

Clate =

m∑
i=1

ri.t · (piΠm
k=i+1(1− pk)). (16)

F. DETAILS OF EXPERIMENTS

F.1 Details of implementations
Traditional methods: We implemented three traditional methods:
PARTITION, CENTER, and MERGE [10]. All methods compute the
similarity between a pair of records as the weighted sum of the
attribute similarities. They differ in clustering methods:

Algorithm 5 ADJUST(R, C)
Input: R records in increasing time order.

C pre-clustering of records in R.
Output: C new clustering of records in R.
1: repeat
2: //E-step
3: for each record r ∈ R do
4: for each cluster C ∈ C do
5: compute sim(r, C) = cons(r, C) ∗ cont(r, C);
6: end for
7: end for
8: //M-step
9: Choose the possible world with the highest probability as in

Ln.28-35 of LATE;
10: until C is not changed
11: return C;

• PARTITION starts with single-record clusters and merges two
clusters if they contain similar records (i.e., applying the tran-
sitive rule).

• CENTER scans the records, merging a record r with a cluster
if it is similar to the center of the cluster; otherwise, creates a
new cluster with r as its center.

• MERGE starts from the result of CENTER and merges two
clusters if a record from one cluster is similar to the center of
the other cluster.

Since CENTER and MERGE are order sensitive, we run each of
them 5 times and report the best results.

Similarity computation: We compute similarity between a pair of
attribute values as follows.

• name: We used Levenshtein metric except that if the Leven-
shtein similarity is above .5 and the Soundex similarity is 1,
we set similarity 1.

• address: We used TF/IDF metric, where token similarity is
measured by Jaro-Winker distance with threshold .9. If the
TF/IDF similarity is above .5 and the Soundex similarity is 1,
we set similarity 1.

• co-author: We used a variant of Jaccard metric (see Eq.(12)),
where name similarity is measured by Levenshtein distance
and θh = .8. We apply this similarity only when the record
similarity w.r.t single-valued attributes is above θs = .5.

F.2 Additional experimental results
We compared several implementation details and reported effi-

ciency on the partial Patent data. We used the default setting unless
mentioned otherwise and reported results for ADJUST.

Decay learning methods: We learned the decay in three ways:
DETERMINISTIC learns the decay as described in Section 3; SIN-
GLECOUNT learns single-count decay; and PROBABILISTIC learns
the probabilistic decay (Appendix A). We observed that (1) these
three methods learn similar curves, and (2) applying the three dif-
ferent curves lead to very similar results (Figure 11).

Edge deletion strategies: We tried various edge-deletion strate-
gies for late binding: NODELETE keeps all edges; THRESHOLD-
ING keeps edges with similarity over .8; TOPK keeps only the top-k
edges with similarity over .8; GAP keeps the top edges with weights
above .8 and gap within .1 (Appendix D). Figure 12 shows that (1)
NODELETE keeps all edges, which often have low weights after
normalization, and can thus split many clusters and obtain a very

Figure 11: Comparing different decay
learning methods.

Figure 12: Comparing different edge
deletion strategies.

Figure 13: Comparing different ad-
justed binding methods.

Figure 14: Results of varying
attribute weights.

Figure 15: Scalability of AD-
JUST.

low recall; and (2) different edge-deletion strategies lead to very
similar F-measures and improve both efficiency and result quality
over NODELETE.

Cluster adjusting strategies: We implemented three versions of
adjusted binding: LATEADJUST applies deterministic binding on
the results of late binding; EARLYADJUST applies deterministic
binding on the results of early binding; and PROBADJUST applies
probabilistic binding on the bi-partite graph created in late binding.
Figure 13 shows their results. First, we observe that PROBADJUST
obtains similar results to LATEADJUST while the running time is
50% longer (not shown in the figure); showing that it does not have
obvious advantage. Second, we observe that EARLYADJUST and
LATEADJUST obtain similar results on the patent data set; how-
ever, LATEADJUST improves over EARLYADJUST by 26% on the
DBLP WW data set.

Different parameters: We ran two experiments to test robust-
ness against parameter settings. We first changed thresholds θh
and θl for string similarity and observed very similar results (vary-
ing within .4%) when θh ∈ [.7, .9] and θl ∈ [.5, .7]. Second,
we applied different attribute weights (wname ∈ [0.4, 1], waff =
1−wname) to compute no-decayed similarity. Figure 14 shows that
(1) ADJUST is robust against attribute weights; and (2) ADJUST
always outperforms PARTITION.

Scalability: To test scalability of our techniques, we randomly di-
vided the partial patent data set into 10 subsets with similar sizes
without splitting entities. We started with one subset and gradually
added more, and reported the execution time in Figure 15. We
observe that (1) ADJUST terminated in 10.3 minutes on all 1871
records and is reasonably fast given that this is an off-line process;
and (2) the execution time grows nearly linearly in the size of the
data (though can be quadratic in the size of a partition after pre-
processing), showing scalability of our techniques.

G. COMPARING WITH EXISTING RECO
RD LINKAGE TECHNIQUES

Record linkage has been extensively studied in recent years [7,
12]. To the best of our knowledge, existing techniques do not con-
sider evolution of entities over time and treat the data as snapshot
data. Our techniques differ from them in two aspects: the way we
compute record similarity and the way we cluster records.

For record-similarity computation, existing works can be divided
into three categories: classification-based approaches [8] classify a
pair of records as match, unmatch and maybe; distance-based ap-
proaches [5] apply distance metrics to compute similarity of each
attribute, and take the weighted sum as the record similarity; rule-
based approaches [11] apply domain knowledge to match records.
Our work falls in the distance-based category; however, we apply
decay such that the weights we use for combining attribute simi-
larities are functions of the time difference between the records, so
we are tolerant of value evolution over time.

Many record linkage techniques, especially classification-based
approaches, require learning parameters or classification models
from training data [6, 19, 8]. Their learning techniques all assume
that record values do not change over time and value differences are
due to different representations of the same value (e.g., “Google”
and “Google, Inc.”). We learn parameters from training data as
well, but we are different in that we take into account possible value
change over time; the decay curves we learn can be considered as
consisting of parameters learned for different time gaps.

Relational entity resolution techniques take entity relationships
(e.g., co-author, co-citation) into account when computing record
similarity [1, 2, 14]. Our techniques also consider such multi-
valued attributes, but we apply agreement decay and give less re-
ward to similar values of such attributes in case of a big time gap.

For record clustering, there exists a wealth of literature on clus-
tering algorithms for record linkage [10]. Among them, uncon-
strained and unsupervised algorithms that result in disjoint clus-
ters are closest to ours. These algorithms may apply the transitive
rule and efficiently perform clustering by a single can of record
pairs (e.g., Partition algorithm [11]), may iteratively specify seeds
of clusters and assign vertexes to the seeds (e.g., Ricochet algo-
rithm [18]), and may perform clustering by solving an optimiza-
tion problem (e.g., Cut clustering [9]). These methods typically
consider the records in decreasing order of record similarity while
we consider the records in time order and collect evidence glob-
ally. Thus, our techniques do not necessarily merge records with
high value similarity if the resulting entity shows erratic changes in
a time period, and do not necessarily split records with low value
similarity if value evolution over time is likely.

