Implementation of Temporal Functions Benchmark in PostgreSQL

Facharbeit
Simon Jakob
10-711-000

Dielsdorf, Switzerland

Institut fir Informatik der Universitat Zirich

Prof. Dr. Michael Bohlen

Supervisor: Amr Noureldin

Deadline: 30.11.2012

Contents

QYo o 11 o 4 oY
TeMPOral Databases.....cccccuiiieiiriiiieeiiienereeetrneerrnseeeesereasereassrensesensesrasssrssssssnsssensessnssssnsssenssssansenens
Maximally-Fragmented SICING.....ccceuiirieiiieeiiieiirerirrcreecrreneerrecreenereasesensesrnsssrnssseesssrensessnssssnsssennes
2T Toll Lo [T O O PP PSP PPP R PPPPPOP
TaaY o] (=T 0[] gL - L o] o S
Y LYol T | O T O
EXPEIIMENTS .. ceuiieeiiieiiieeiieeiereenetteeerreeseenserensersasesrnsssensessassersasssessssensesensessnssssnssssnssssansessnsessnsssannes
T 1101 oo
Performance differences in between datasetsccccoiieiiiiiiiiiiinii e
Performance differences in DEtWEEN QUEITIESuuuiuiuiuiiiiiiiiiiiieee it e e eeeeeeeeeeeeeeeeeeeeeeeeeeerea e aas
000 0 o] 113 ' o T
0T 01T 4 o 15 N

I} =] - 1 {0 =PI

Introduction

Information is the currency of the modern society and thus storing and accessing it effectively
becomes increasingly important. To reach this goal, procedural languages were introduced to make
more complex computations possible than those possible with declarative SQL.

Now, a great number of the data we produce and want to handle has a time dimension which should
be included in the database. To implement procedural functions including the temporal domain is
harder than in nontemporal, databases and is therefore a current field of study. An efficient
algorithm that converts nontemporal functions, that are easier to implement into temporal is thus of
big value.

In this paper, | will first give a short introduction about temporal databases. Then | will show the
difficulties of implementing temporal functions, using an example. Second, | will show how the
maximally-fragmented slicing approach proposed by Snodgrass et. al. [1] solves this problem, using
the same example. Last, | will do performance experiments to evaluate the fitness of this approach
for different queries and database sizes.

Temporal Databases

Temporal data is any data provided with a time span when this data is valid , called Valid-Time[2]. It
is also possible to save for each information when you knew about it, called Transaction-time, but
this is not covered by this paper [2]. Below is an example for a nontemporal and for a temporal
Employee relation.

Name DeplD Salary
A 1 2000
B 2 5000
C 1 4000

Table 1: Nontemporal relation

Name DeplD Salary TS TE
A 1 2000 0 7
B 2 5000 2 5
C 2 1000 0 4
C 1 6000 4 6

Table 2: Temporal relation

The benefit of temporal databases becomes evident in the case of employee C. As C changes
departments the TE(valid-Time End) of that tuple is set to the time when C changes his department.
At the same time a new tuple with TS (valid-Time Start) equal to the time when C changes his
department is inserted into the database. In nontemporal databases, the only way to handle this
change is to update the tuple and so lose the old information.

Invoking a procedural function that gives the employee with the highest salary in the nontemporal
database would produce the following output.

Name DeplD Salary

B 2 5000

Table 3: Nontemporal output

The PostgreSQL-function that does this could look like this:

CREATE OR REPLACE FUNCTION maxsalary () RETURNS int AS $$

DECLARE
maxsalaryint := NULL;
t RECORD;
BEGIN
FOR t IN SELECT * FROM employee LOOP
IF maxsalary IS NULL THEN
maxsalary := t.salary;
ELSIF maxsalary<t.salary THEN
maxsalary := t.salary;
END IF;
END LOOP;
RETURN maxsalary;
END;

$$ LANGUAGE PLPGSQL;
SELECT * FROM maxsalary();

Codeblock 1: nontemporal query

Asking for the same function in a temporal database the output becomes more complicated as every
tuple in the result must be coupled with the time interval during which the tuple is valid:

Name DeplID Salary T_Start T _End
A 1 2000 0 2
B 2 5000 2 4
C 1 6000 4 6
A 1 2000 6 7

Table 4: Temporal output

The PostgreSQL-function that does this could look like this:

CREATE TYPE inttemporal AS (maxsalaryint, t int)

CREATE OR REPLACE FUNCTION maxsalary_time() RETURNS SETOF inttemporal as $$
DECLARE

maxsalaryint := NULL;
r RECORD;
t int :=0;
s inttemporal$ROWTYPE;
BEGIN
WHILE t<= (SELECT MAX(TE) FROM Employee) LOOP
Maxsalary := NULL;
FOR r IN (SELECT* FROM employee WHERE t >= (SELECT TS FROM Employee) AND
t <= (SELECT TE FROM Employee)) LOOP
IF maxsalary IS NULL THEN
maxsalary := r.salary;
ELSIF maxsalary<r.salary THEN
maxsalary := r.salary;
END IF;
END LOOP;
s.maxsalary := maxsalary;
8.C 8= &g
RETURN NEXT s;
T := t+1;
END LOOP;
END;

$$ LANGUAGE PLPGSQL;

Codeblock 2: Brute force temporal query

In this example the query is evaluated for every time step from zero to the latest time found in the
relation. As this example confirms the statement of Snodgrass that “every temporal function is three
times longer in terms of lines than its nontemporal equivalent” [3] and the premonition that
performance of this approach may not be the best, the need for a powerful convertion-algorithm is
evident.

Maximally-Fragmented Slicing

Basic Idea

The basic idea of maximally-fragmented slicing (MFS) is to first collect all the tables referenced by the
function to then compute constant periods (CP). During a constant period, none of the collected
tables undergoes any change and the evaluation of a query thus gives the same result during any
subinterval of the constant period. Knowing this, the DBMS will then be requested to evaluate the
query for each constant period and then give back the temporal result. The MFS was proposed by
Snodgrass et. al. [2].

Implementation
First the constant periods have to be computed. This can be done by first collecting all the
timestamps (start time and end time) from the input-tables and put them into a list. In PostgreSQL:

CREATE TEMPORARY TABLE timestamps AS (
SELECT TS AS time point FROM employee
UNION

SELECT TE AS time point FROM employee);

Codeblock 3: Timestamps

Using this, the constant periods are computed by making begintime-endtime-pairs of the
timestamps, where begintime is always earlier than endtime and there is no timestamp in
between begintime. It is also allowed to just have a begintime, if no timestamp exists that is
later than it. This conditions are given in the relational calculus expression shown in Figure 1.

ep(ri, T2, Tn) = {{bt,et)|bt €tsAet €tsAbt < et
A-Tt € ts(bt < t < et)}

Figure 1: Expression to extract constant periods [2]

The implementation as a View in PostgreSQL:

CREATE VIEW CP AS (

SELECT timestampsl.time point AS begin time, timestamps2.time point AS end time

FROM timestamps AS timestampsl, timestamps AS timestamps2

WHERE timestampsl.time point < timestamps2.time point AND

NOT EXISTS (SELECT time point FROM timestamps WHERE timestampsl.time point <time point AND
time point< timestamps2.time point)

ORDER BY timestampsl.time point) ;

Codeblock 4: Constant Periods

Second, changes have to be made to the query that invokes a function. As it should give back a
temporal table we have to add the begintime and endtime of a CP to the SELECT-clause and
therefore the table CP to the FROM-clause. Additionally the WHERE-clause has to be equipped with
conditions granting that every tuple that is given to the function overlaps with the cp.begintime
it is given with.This ensures the validity of the input at a given time. Per definition the evaluation of a
qguery can not change during a CP and because of that it is more efficient to just compare with the
begintime rather than all of the constant period, which would be much slower.

SELECT employee.Name, employee.DepID, employee.Salary, cp.begin time, cp.end time

FROM employee, cp

WHERE employee.name = (SELECT name FROM employee WHERE salary = maxsalary(cp.begin time)
AND employee.T Start<= cp.begin time

AND cp.begin_time<employee.T End;

Codeblock 5: Query invoking the function

Third, changes in the function-body are required. The WHERE-clause has to be modified similarly as
in the query invoking the function, that is to say by adding conditions to compare the tuples with the
begintime of the CP. This ensures that the time-valid input is only compared with valid tuples at
the CP-begintime of the input. Doing so for all the valid tuples for all constant periods gives the
final result.

CREATE OR REPLACE FUNCTION maxsalary temp(begin time inInt) RETURNS int AS $$
DECLARE

maxsalaryint := NULL;
t RECORD;
BEGIN
FOR t IN SELECT * FROM employee
WHERE employee.T Start<= begin time in
AND begin_ time in<employee.T End
LOOP
IF maxsalary IS NULL THEN
maxsalary := t.salary;
ELSIF maxsalary<t.salary THEN
maxsalary := t.salary;
END IF;
END LOOP;
RETURN maxsalary;
END;

$$ LANGUAGE PLPGSQL;

Codeblock 6: Function body

Special Case

If the temporal function is invoked in the FROM-Clause of the query invoking the function the
before explained method does not work entirely. This, because it is not possible to equip every result
tupple with its constant period. This special case can be handled by implementing an additional
function which then is called by the query. This function could look like this:

CREATE TABLE res (taupsm item id CHARACTER (10), sometime DATE, TS DATE, TE DATE);

CREATE OR REPLACE FUNCTION getresult (first n int)
RETURNS setof rowtype t AS $$
DECLARE

cpen record;
BEGIN

FOR cpen IN (SELECT * FROM CP) LOOP

INSERT INTO res (SELECT *,cpen.begin time,cpen.end time
FROM get first n items about hockey temp

(first_n,cpen.begin_time));
END LOOP;
RETURN QUERY SELECT * FROM res;
END;

$SLANGUAGE PLPGSQL;

SELECT * FROM getresult (10);

Codeblock 7:example of a special case result forming function

First a table is created including the variables the original function returns and the begintime and
endtime of the constant period. The function is implemented taking the same input as the original
function and returning a set of the before created table. After that a record variable iterates through
all cp entries and in this loop all the results of the original query are equipped with their proper
constant period and are inserted into the result table. In the end this table is returned and is what
you get when you call this function in the FROM-clause.

Experiments

In the course of my facharbeit | implemented 17 temporal functions with different functionality and
components disregarding the temporal domain. Then | converted them into temporal functions using
the maximally-fragmented slicing approach. | then measured evaluation-time for all of these
functions applying them on six different databases with the following settings.

dataset dsl m2 | dsl_m3 ds2_ m2 |ds2_ m3 | ds3_m2 ds3_m3
Number of tuples valid | 25 882 103 768 25 882 103 768 25 882 103 768
in the beginning

Number of slices in the | 104 104 104 104 693 693
database

Number of 240 240 240 240 30 30
inserts/updates/deletes

that take place per time

step

Selection type uniform | uniform gaussian | gaussian | uniform uniform

Table 5: database settings

In a nutshell the difference between dsl and ds2 is a different selection type and the difference to
ds3is a different number of slices and changes. The difference in between m2 and m3 is the different

size of the databases.

Full results are in the appendix, and shown in figure 2.

Evaluation

Analyzing the results two phenomena come up. First, the overall pattern how the queries perform on
the different databases and second, the way some queries have a way better performance in a

temporal setting than others.

Performance differences in between datasets

The difference in between dsl and ds2 are really small and one time ds1 has better performance
sometimes ds2. . Table 6 shows the factor that the evaluation of a query on ds1 takes longer than the
same query on ds2.

Factor ds1_m2/ds2_m?2 Factor ds1_m3/ds2_m3 Average

0.89 1.09 0.99

Table 6: performance difference factor between ds1 and ds2

As the difference really is in the range of the measuring inaccuracy it can be stated that the selection
type has just a really small influence on performance of a temporal query produced using maximally
fragmented slicing. The only possible finding is that the bigger the dataset gets (m3) the better the
Gaussian selectiontype works.

The difference in performance between ds1 (and ds2) and ds3 are considerable.

Factor ds3_m2/ds1l_m2 Factor ds3_m3/ds1l_m3 Average

7.68 7.89 7.79

Table 7: performance difference factor between ds1 and ds3

As the table shows, the evaluation of a query in ds3 takes in average seven to eight times as long as
in ds3. Moreover, the factor is quite identical no matter how big the dataset is. In table 5 it was
shown, that ds3 has roughly 7 times as many slices as ds1 but has 8 times less changes per slice.
Knowing about the about 8 times longer evaluationtime on ds3 it is obvious that the number of slices
affects the performance much more than the number of changes per slice. It is not possible to say for
sure with my experiments, but the guess that the number of slices affect the performance in a
guadratic way and changes per slice affect it just linearly lies close at hand.

The difference between m2 and m3 is considerable as well. Table 8 shows the factor that the
evaluation of a query on m3 takes longer than the same query on m2.

Factor ds1_m2/dsl_m3 Factor ds2_m2/ds2_m3 Factor ds3_m2/ds3_m3 Average

3.31 2.90 3.15 3.12

Table 8: performace difference factor between m2 and m3

The factor is similar in all 3 datasets and shows it roughly takes 3 times as long to evaluate a query in
a dataset roughly 4 times as big. Furthermore the factor for ds2 confirms the earlier finding that the
gaussian selectiontype works better the bigger the dataset gets, as it is smaller than the other
factors.

Performance differences in between queries
There were temporal queries with a really poor performance in my experiment but at the same time
there were others which took some thousand times less long to evaluate.

On the long side queries 11 and 14 have to be mentioned. Query 14 took too long to actually
measure and 11 even caused memory problems on my computer. Query 14 uses a cursor in the
function body which is thus opened, fetched and closed for every constant period. As the experiment
shows this causes substantial performance loss. Query 11 creates a temporal table every time the
function is invoked. This produces so many temporal data that either my computer or my software
cannot handle it. Even if it could handle it, the performance would almost certainly be poor.

§

On the sort evaluation time side we have for example query 5 which does not return any tuple, so
every time the function is invoked it only has to do one comparison to know that no tuple with such
specification exist and it is not needed to compare it with any validtime. This obviously results in a
short evaluation time. The same applies to query 17b.

The other queries have an evaluation time between 20 and 90 seconds (for ds1). These smaller
differences are due to differences in complexity of the functions. | should think that these difference
factors are comparable to the factors in a nontemporal setting.

Conclusion

In my work | showed how temporal functions are implemented using the maximally fragmented
slicing approach and how to handle special cases. | then showed how temporal functions produced
with MFS perform on different datasets and how selectiontype, size of the dataset, number of slices,
and number of changes per slice have an influence on performance. Last | showed how different
qgueries perform in a temporal function.

Further studies could extend the experiments to get a quantitative understanding of the influence of
the different factors of a dataset on the performance of the temporal function. In addition the
performance of MFS temporal functions could be compared with the performance of functions using
different methods.

Appendix
All benchmarks are running on a Acer Aspire 5735Z, Intel Pentium dual core processor (2.16GHZ, 667
MHz FSB, 1 MB L2 cache) and are evaluated using pgAdmin. Results in milliseconds.

QUERY DS1 DS2 DS3

2 78421 85192 553535
2b 83257 87687 542365
3 41808 41216 238103
5 515 2449 2434

6 6146 5850 48750
7 50310 50356 343917
7b 48438 47455 327460
8 31730 29312 225951
9 22354 23322 156281
10 1451 3557 25865
11

14 907514 864412 >1500000
17 88858 72774 646063
17b

19 61137 59717 406317
20 249 1466 8736

Literature

[1] Richard T. Snodgrass ,DengfengGao , Rui Zhang , and Stephen W. Thomas. Temporal Support
for Persistent Stored Modules. In ICDE, pages 114-125, 2012.

[2] Richard T. Snodgras. A Case Study of Temporal Data

[3] R. T. Snodgrass. Developing Time-Oriented Database Applications in
SQL.Morgan Kaufmann Publishers, 2002.

