Navigation auf uzh.ch
Suche
Navigation öffnen/schliessen
Department of Informatics
Visualization and Multimedia Lab
Quicklinks und Sprachwechsel
Home
Contact
Deutsch
Search
Main navigation
Contact
Zurück
Contact
Contact
Menü schliessen
News
Zurück
News
News
Menü schliessen
People
Zurück
People
People
Menü schliessen
Research
Zurück
Research
Research
Menü schliessen
Teaching
Zurück
Teaching
Teaching
Menü schliessen
Publications
Zurück
Publications
Publications
Menü schliessen
Links
Zurück
Links
Links
Menü schliessen
Open Positions
Zurück
Open Positions
Open Positions
Menü schliessen
More
Menü schliessen
Home
Visualization and MultiMedia Lab
Links
Tutorial on Tensor Decomposition Methods in Visual Computing
Tensor Decomposition Methods in Visual Computing
Tutorial held at the
IEEE VIS 2016
conference.
Lecturers:
Renato Pajarola
, Professor, Visualization and MultiMedia Lab, University of Zürich
Rafael Ballester-Ripoll
, PhD Student, Visualization and MultiMedia Lab, University of Zürich
Slides:
Section 1 (PDF, 46 MB)
Section 2 (PDF, 37 MB)
Links:
Background theory on tensor decomposition (PDF, 9 MB)
MicroCT volume datasets
BTF datasets
Tensor decomposition software
vmmlib library
References:
Basic Theory and Models
[LMV00a] "A Multilinear Singular Value Decomposition" (L. de Lathauwer et al.)
[LMV00b] "On the Best Rank-1 and Rank-(R1,...,RN) Approximation of Higher-Order Tensors" (L. de Lathauwer et al.)
[KB09] "Tensor Decompositions and Applications" (T. Kolda, B. Bader)
[O10a] "Tensor-Train Decomposition" (I. V. Oseledets)
[S13] "Tensor Approximation in Visualization and Graphics: Background Theory" (S. Suter) (PDF, 9 MB)
Volume Compression and Visualization
[WXC+08] "Hierarchical Tensor Approximation of Multidimensional Visual Data" (Q. Wu et al.)
[SGM+11] "Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization" (S. Suter et al.)
[TMP13] "TAMRESH: Tensor Approximation Multiresolution Hierarchy for Interactive Volume Visualization" (S. Suter et al.)
[BSP15] "Analysis of Tensor Approximation for Compression-Domain Volume Visualization" (R. Ballester-Ripoll et al.)
[BP15] "Lossy Volume Compression Using Tucker Truncation and Thresholding" (R. Ballester-Ripoll, R. Pajarola)
Bidirectional Texture Functions
[TS06] "All-Frequency Precomputed Radiance Transfer using Spherical Radial Basis Functions and Clustered Tensor Approximation" (Y.-T. Tsai, Z.-C. Shih)
[RK09] "BTF Compression via Sparse Tensor Decomposition" (R. Ruiters, R. Klein)
[T12] "K-clustered Tensor Approximation: A Sparse Multilinear Model for Real-time Rendering" (Y.-T. Tsai)
[T15] "Multiway K-Clustered Tensor Approximation: Toward High-Performance Photorealistic Data-Driven Rendering" (Y.-T. Tsai)
[BP16] "Compressing Bidirectional Texture Functions via Tensor Train Decomposition" (R. Ballester-Ripoll, R. Pajarola) (to appear)
Tensor Completion and Synthesis
[CSS08] "Higher Order SVD Analysis for Dynamic Texture Synthesis" (R. Costantini et al.)
[KSV13] "Low-Rank Tensor Completion by Riemannian Optimization" (D. Kressner et al.)
[CHL14] "Simultaneous Tensor Decomposition and Completion Using Factor Priors" (Y.-L. Chen et al.)
[FJ15] "Tucker Factorization with Missing Data with Application to Low-n-Rank Tensor Completion" (M. Filipovic, A. Jukic)
Adaptive Sampling
[HPB07] "Matrix Row-Column Sampling for the Many-Light Problem" (M. Hasan et al.)
[OST08] "Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time" (I. V. Oseledets et al.)
[CC10] "Generalizing the Column-Row Matrix Decomposition to Multi-Way Arrays" (C. Caiafa, A. Cichocki)
[O10b] "TT-Cross Approximation for Multidimensional Arrays" (I. V. Oseledets)
[S11] "Fast Adaptive Interpolation of Multi-Dimensional Arrays in Tensor Train Format" (D. Savostyanov and I. V. Oseledets)
[BPP16] "A Surrogate Visualization Model Using the Tensor Train Format" (R. Ballester-Ripoll et al.) (to appear)
Bild-Overlay schliessen
Video-Overlay schliessen
[%=content%]
[%=content%]
[%=content%]
back
Übersichtsseite
[%=text%]
[%=content%]
Menü schliessen
[%=text%]
back
[%=text%]
[%=content%]